

ОРИГИНАЛЬНЫЕ СТАТЬИ

Оригинальная статья УДК 616.13.002.2-007.64 https://doi.org/10.52560/2713-0118-2024-1-37-50

Контрастирование стенки аневризмы при магнитно-резонансной томографии: новый предиктор разрыва мешотчатых внутричерепных аневризм

К. С. Семин¹, Н. Е. Захарова², Ш. Ш. Элиава³, А. Н. Коновалов⁴, А. С. Хейреддин⁵, Д. Б. Калаева⁶, А. И. Баталов⁷, И. Н. Пронин⁸

Автор, ответственный за переписку: Кирилл Сергеевич Семин, kirillsemin1@rambler.ru

Резюме

Обоснование. Современные исследования показывают, что накопление контрастного препарата стенкой аневризмы коррелирует с высоким риском роста или разрыва.

Цель. Сопоставить признак контрастирования стенки аневризмы с известными характеристиками, влияющими на риск ее разрыва.

Материалы и методы. В исследование включены 95 пациентов (с 132 ранее выявленными мешотчатыми аневризмами), которым проводилась магнитно-резонансная томография (MPT) на томографе с напряженностью поля 3,0 Тесла (Тл). Наличие или отсут-

© Семин К. С., Захарова Н. Е., Элиава Ш. Ш., Коновалов А. Н., Хейреддин А. С., Калаева Д. Б., Баталов А. И., Пронин И. Н., 2024

¹ Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, Москва, Россия

^{1–8} Федеральное государственное автономное учреждение «Национальный медицинский исследовательский центр нейрохирургии им. ак. Н. Н. Бурденко» Министерства здравоохранения Российской Федерации, Москва, Россия

¹kirillsemin1@rambler.ru, https://orcid.org/0000-0002-1897-9312

²nzakharova(qnsi.ru, https://orcid.org/0000-0002-0516-3613

³ eliava@nsi.ru, https://orcid.org/0000-0001-6103-9329

⁴Ankonovalov@nsi.ru, https://orcid.org/0000-0002-0932-4752

⁵AKheireddin@nsi.ru, http://orcid.org/0000-0002-6395-2055

⁶ dkalaeva@nsi.ru, https://orcid.org/0000-0001-8719-2225

⁷abatalov(qnsi.ru, https://orcid.org/0000-0002-8924-7346

⁸ pronin@nsi.ru, https://orcid.org/0000-0002-4480-0275

ствие контрастирования аневризмы сопоставлялось со следующими характеристиками: пол и возраст пациента, наличие артериальной гипертензии, размер и форма аневризмы, а также с оценкой по шкале PHASES.

Результаты. Исследование показало, что накопление контрастного препарата стенкой аневризмы связано с размером купола аневризмы (p < 0.001, Sp = 78.1 %, Se = 72.1 %) и баллом по шкале PHASES (p < 0.001, Sp = 64.1 %, Se = 57.1 %). Было выявлено отсутствие взаимосвязи (p > 0.05) между контрастированием стенки интракраниальной аневризмы с возрастом, полом, артериальной гипертензией, формой и локализацией аневризмы.

Заключение. Накопление контрастного препарата в стенке аневризмы при MP-визуализации может рассматриваться дополнительным маркером риска их разрыва.

Ключевые слова: аневризма, магнитно-резонансная визуализация, сосудистая стенка

Для цитирования: Семин К. С., Захарова Н. Е., Элиава Ш. Ш., Коновалов А. Н., Хейреддин А. С., Калаева Д. Б., Баталов А. И., Пронин И. Н. Контрастирование стенки аневризмы при магнитно-резонансной томографии: новый предиктор разрыва мешотчатых внутричерепных аневризм // Радиология — практика. 2024;(1):37-50. https://doi.org/10.52560/2713-0118-2024-1-37-50

ORIGINAL RESEARCH

Original research

Aneurysm Wall Contrast on Magnetic Resonance Imaging: A New Predictor of Rupture of Saccular Intracranial Aneurysms

K. S. Semin¹, N. E. Zakharova², Sh. Sh. Eliava³, A. N. Konovalov⁴, A. S. Kheireddin⁵, D. B. Kalaeva⁶, A. I. Batalov⁷, I. N. Pronin⁸

¹ Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia

^{1–8} Federal State Autonomous Institution «N. N. Burdenko National Medical Research Center of Neurosurgery» of the Ministry of Health of the Russian Federation, Moscow, Russia

¹kirillsemin1@rambler.ru, https://orcid.org/0000-0002-1897-9312

²nzakharova@nsi.ru, https://orcid.org/0000-0002-0516-3613

³ eliava@nsi.ru, https://orcid.org/0000-0001-6103-9329

⁴Ankonovalov(qnsi.ru, https://orcid.org/0000-0002-0932-4752

⁵ AKheireddin@nsi.ru, http://orcid.org/0000-0002-6395-2055

6 dkalaeva@nsi.ru, https://orcid.org/0000-0001-8719-2225

⁷abatalov(qnsi.ru, https://orcid.org/0000-0002-8924-7346

⁸ pronin@nsi.ru, https://orcid.org/0000-0002-4480-0275

Corresponding author: Kirill S. Semin, kirillsemin1@rambler.ru

Abstract

Background. Recent studies suggest that accumulation of contrast agent in the aneurysm's wall may predict a high risk of aneurysm growth or rupture.

Objective. To compare the enhancement of the aneurysm wall with other characteristics that affect at the risk of rupture.

Materials and Methods. The study included 95 patients with 132 previously identified saccular aneurysms, who underwent magnetic resonance imaging (MRI) according to a specialized protocol using 3.0 Tesla MRI scanner. The presence or absence of aneurysm's wall enhancement compared with the following characteristics: gender and age of the patient, the size and shape of the aneurysm, the presence of arterial hypertension, and the PHASES score.

Results. Accumulation of contrast agent by the aneurysm's wall was associated with the aneurysm dome size (p < 0,001, Sp = 78,1 %, Se = 72,1 %) and PHASES score (p < 0,001, Sp = 64,1 %, Se =57,1 %). No relationship between age, gender, arterial hypertension, shape, and aneurysm location and contrast enhancement was found (p > 0,05).

Conclusion. Contrast enhancement of the aneurysm wall on MRI can be considered an additional risk marker of its rupture.

Keywords: intracranial aneurysm, magnetic resonance imaging, aneurysm's wall

Forcitation: Semin K. S., Zakharova N. E., Eliava Sh. Sh., Konovalov A. N., Kheireddin A. S., Kalaeva D. B., Batalov A. I., Pronin I. N. Aneurysm wall contrast on magnetic resonance imaging: a new predictor of rupture of saccular intracranial aneurysms. *Radiology — Practice*. 2024;1:37-50. (In Russ.). https://doi.org/10.52560/2713-0118-2024-1-37-50

Введение

В связи с увеличением доступности неинвазивных методов нейровизуализации в клинической практике становится выше вероятность выявления бессимптомных неразорвавшихся аневризм, распространенность которых среди взрослого населения варьирует от 3 до 7 % [6, 13]. Уровень летальности в результате разрыва аневризмы головного мозга очень высок и составляет от 25 до 50 % [2]. Поэтому превентивное эндоваскулярное и хирургическое лечение неразорвавшихся интракраниальных аневризм получило широкое распространение в мире. При этом риск разрыва интракраниальной аневризмы (ИА) необходимо сопоставлять с рисками предполагаемого лечения в случае отсутствия признаков разрыва, анатомо-топографические учитывать характеристики каждой аневризмы и индивидуальные особенности каждого пациента. Предыдущие исследования определили ряд факторов, которые могут способствовать разрыву аневризмы и на анализе которых было построено несколько моделей прогнозирования разрыва [3, 7]. В настоящее время, с учетом существующих исследований и прогностических моделей PHASES и ELAPSS, основанных на данных 8283 и 1507 пациентов соответственно, выявлено несколько предикторов роста и разрыва аневризм, к которым относят ранее выявленное субарахноидальное кровоизлияние (САК), локализацию, возраст, популяцию, размер, форму мешотчатой аневризмы и артериальную гипертензию [3, 7]. Однако, по мнению некоторых авторов, эти модели нуждаются в модификации для улучшения индивидуального прогнозирования исходов заболевания [14]. Исследователи считают, что изменения стенки аневризмы с накоплением контрастного препарата могут отражать процессы воспаления, тромбоза и неоваскуляризации, что играет ключевую роль в формировании, росте и разрыве аневризмы [8, 16, 17]. В этой связи целью нашей работы стало сравнение ранее выявленных предикторов разрыва ИА с новым диагностическим маркером, а именно контрастированием стенки аневризмы на большой когорте пациентов одного клинического центра.

Материалы и методы

С ноября 2020 по май 2023 года в НМИЦ нейрохирургии им. ак. Н. Н. Бурденко по разработанному протоколу «МР-визуализация сосудистой стенки» было просканировано 113 пациентов с внутричерепными аневризмами, ранее выявленными при компьютерно-томографической ангиографии (КТА), рутинной МРТ или цифровой субтракционной ангиографии (ЦСА). Критерии включения: наличие у пациентов мешотчатых неразорвавшихся аневризм без ограничения по возра-

сту и полу. Критериями исключения являлись наличие признаков разрыва аневризмы, фузиформных аневризм, а также пациентов, которым по тем или иным причинам не удалось выполнить полноценное МРТ. Разорвавшимися аневризмами в нашем исследовании считались те, которые имели признаки ранее произошедшего разрыва, доказанного в дальнейшем при хирургическом лечении. К таковым мы относили наличие крови или продуктов ее распада в субарахноидальном пространстве в области аневризмы, наличие тромботических масс на куполе аневризмы. Данное проспективное исследование было одобрено этическим комитетом ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко». Процесс отбора пациентов в соответствии с критериями включения и исключения показан на рис. 1.

Сканирование проводилось на 3 Тл MP-томографе (Signa HDxT; GE Healthcare, USA) с использованием 8-каналь-

Рис. 1. Блок-схема процесса отбора пациентов в соответствии с критериями включения и исключения

ной катушки. Протокол сканирования «МР-визуализация сосудистой стенки» включал в себя следующие импульсные последовательности: T2 SE, DWI, SWAN, 3D TOF High Resolution, 3D T1 FSE (T1 Cube) до и после в/в введения контрастного препарата (табл. 1).

Контрастный препарат с концентрацией гадолиния 1,0 ммоль/л вводился внутривенно в дозировке 0,1 мл/кг.

Обработка полученных данных проводилась на рабочей станции General Electric (GE) VolumeShare 5 (рис. 2).

После проведенного MPT-исследования пациенты поступали на хирургический этап лечения, где проводилось микрохирургическое выключение аневризм путем клипирования.

В ходе проведения исследования учитывались следующие характеристики пациентов: возраст, пол, ранее перенесенные САК, наличие артериальной гипертензии. Признак артериальной гипертензии определялся как положительный при систолическом артериаль-

ном давлении ≥ 140 мм рт. ст. и выше, или диастолическом артериальном давлении ≥ 90 мм рт. ст. и выше, и/или приеме антигипертензивных средств. Собирались следующие данные об аневризмах: расположение, высота купола, ширина шейки, соотношение высоты купола к ширине шейки, неправильная форма аневризмы, которую мы определяли как наличие дивертикула или нескольких камер. Локализация мешотчатых аневризм была распределена в соответствии со шкалой PHASES на 3 группы:

- внутренняя сонная артерия (BCA);
- средняя мозговая артерия (СМА);
- передняя мозговая артерия (ПМА), задняя соединительная артерия (ЗСоА) и вертебробазилярный бассейн

Статистическая обработка данных проводилась с использованием открытого программного обеспечения jamovi (2.3.16). Количественные данные сопоставлялись с помощью непараметриче-

Таблица 1
Последовательности и их характеристики протокола
«МР-визуализация сосудистой стенки»

	Толщина среза	Расстоя- ние между срезами	TR	TE	FOV	Матрица	Время получения последова- тельности
T2 SE	5 мм	1 мм	3500 мс	102 мс	24 см	512 × 256	2 мин 28 сек
T2 FLAIR	5 мм	1 мм	9500 мс	120 мс	24 см	352×224	3 мин 10 сек
DWI	5 мм	1 мм	8000 мс	72 мс	24 см	128 × 128	40 сек
3D TOF HR	1,2 мм	0	19 мс	3 мс	22 см	640 × 352	3 мин 24 сек
SWAN	1 мм	0	87 мс	43 мс	24 см	416 × 320	5 мин
3D T1 FSE (T1 Cube) до и после введения контраст- ного препарата	1 мм	0,5 мм	600 мс	10 мс	25,6 см	256×256	5 мин 30 сек

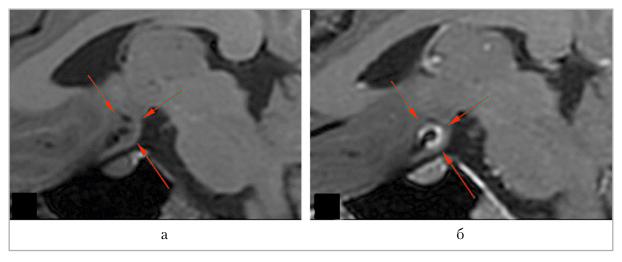


Рис. 2. MPT: T1 CUBE в сагиттальной плоскости до (*a*) и после (*б*) внутривенного введения контрастного препарата. Красными стрелками указана аневризма внутренней сонной артерии, стенки которой накапливают контрастный препарат (*б*)

ского теста Манна — Уитни, качественные — точного критерия Фишера и хи-квадрата Пирсона в случае нескольких групп. Разница считалась статистически значимой при выбранном уровне значимости р < 0,05. Для значимых параметров были рассчитаны показатели относительного риска (ОР) с указанием 95 % доверительного интервала (ДИ), который используется для сравнения вероятности исхода в зависимости от наличия фактора риска.

Результаты

Характеристики пациентов и интракраниальных аневризм представлены в табл. 2. Всего было проанализировано 113 пациентов с общим количеством аневризм 159. Из анализа МРТ были исключены 2 пациента, так как один имел фузиформную аневризму, а не мешотчатую, и у другого пациента не подтвердилось наличие аневризмы при МР-исследовании (на КТ кальцинат вдоль фалькса имитировал аневризму передней мозговой артерии). После проведения хирургического вмешательства из исследуемой выборки были исключены разорвавшиеся аневризмы в количестве 26. Таким образом, для последующего

изучения, сравнения с характеристиками пациента и морфометрическими показателями аневризмы было последовательно отобрано 95 пациентов со 132 неразорвавшимися аневризмами. Размеры аневризм находились в пределах 3,0-36,0 мм. Возраст пациентов исследуемой группы составлял от 10 до 83 лет. Женщин было 64, мужчин 31. Артериальная гипертензия выявлялась у 83 человек (62 %). 32 (24 %) аневризмы располагались в области BCA, 67 (51 %) аневризм — в области СМА, 33 (25 %) аневризмы — в области передней мозговой артерии и артериях заднего отдела кровообращения мозга.

Средний размер аневризмы в группе с накоплением контрастного препарата в стенке статистически значимо был больше, чем в группе без накопления контрастного препарата (7,9 \pm 4,7 против 4,4 \pm 1,5, р < 0,001, параметры чувствительности и специфичности составили 78 и 72% соответственно, с пороговым значением в 5,5 мм, рис. 3).

Вследствие наличия прямой зависимости между размером аневризмы и риском ее разрыва с учетом шкалы PHASES все аневризмы были разделены на 4 группы для определения пропорций между размером и контрастиро-

Таблица 2 **Характеристики пациентов и мешотчатых интракраниальных аневризм** при наличии/отсутствии накопления контрастного препарата в стенке

	Накопление контрастного препарата	Отсутствие накопления контрастного препарата	p Value
Возраст (средн. ± sd)	50.8 ± 12.7	$52,3 \pm 11,2$	0,751
Пол			0,222
Женщины (n)	55	45	
Мужчины (n)	13	19	
Артериальная гипертензия			0,281
Есть (n)	46	37	
Нет (n)	27	22	
Неправильная форма			0,779
Да (n)	23	19	
Нет (n)	45	45	
Размер (средн. ± sd, мм)	7.9 ± 4.7	$4,4 \pm 1,5$	<0,001
от 0 до 6,9 мм	35	59	
от 7.0 до 9.9 мм	22	5	
от 10 до 19 мм	9	0	
более 20 мм	2	0	
Расположение (n)	83	56	0,565
BCA (n)	19	13	
CMA (n)	32	35	
ПМА/3CoA/ПМА (n)	17	16	
Оценка по шкале PHASES			< 0,001
0-4 (балла)	31	50	
5–7 (баллов)	22	14	
8–9 (баллов)	8	0	
≥ 10 (баллов)	7	0	

ванием стенки аневризмы: 37% (35/94) аневризм размером менее 7,0 мм, 81% (22/27) размером от 7,0 до 9,9 мм, 100% (9/9) размером от 10,0 до 19,9 мм и 100% (2/2) размером более 20,0 мм (рис. 4).

42 аневризмы (32 %) имели неправильную форму, что оказалось признаком, не связанным с фактом наличия или отсутствия контрастирования (p > 0.05).

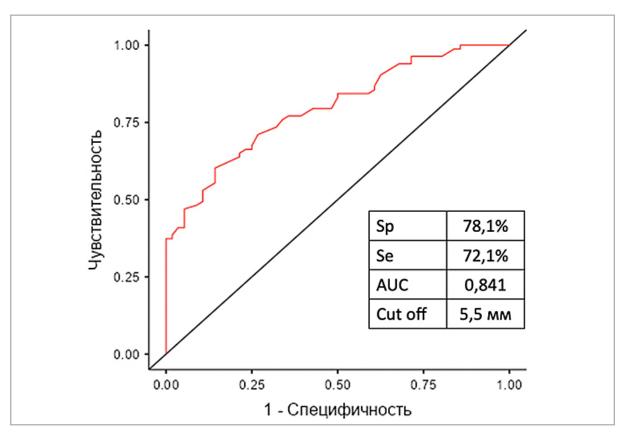


Рис. 3. ROC-анализ: сравнение размера мешотчатых аневризм и патологического контрастирования стенки аневризмы. Sp — специфичность, Se — чувствительность, AUC — площадь под кривой, Cut off — пороговое значение

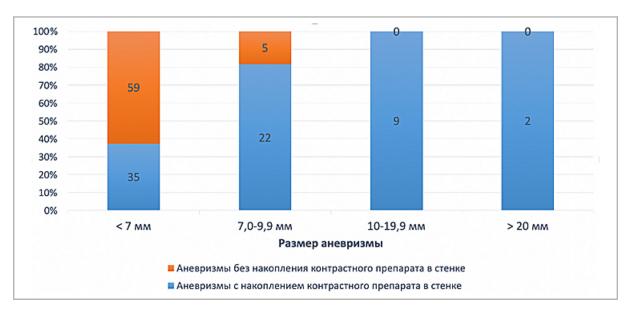


Рис. 4. Пропорция контрастирования стенки аневризмы в зависимости от размера

По нашим данным, факт контрастирования не зависел также от месторасположения аневризмы (p > 0.05). Не было выявлено связи между гипертензией (p > 0.05), полом (p > 0.05), возрас-

том пациента (p > 0.05) и контрастным усилением.

При сопоставлении контрастирования стенки аневризмы с оценкой по шкале PHASES было выявлено, что с уве-

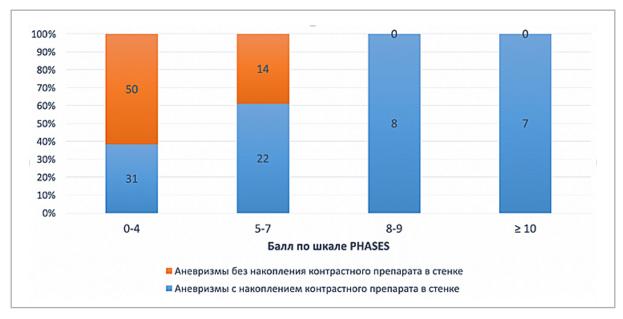


Рис. 5. Пропорция аневризм без/с контрастированием стенки аневризмы в зависимости от балла по шкале PHASES

личением балла доля аневризм с накоплением контрастного препарата прогрессивно увеличивалась (р < 0,001, Se = 57.4 %, Sp = 64.1 %, AUC = 0.66, cut off -6). Для демонстрации пропорции аневризм с накоплением контрастного препарата и балла по шкале PHASES мы разделили пациентов на 4 группы, исходя из вышеперечисленных характеристик: 0-4, 5-7, 8-9и ≥ 10 баллов (рис. 5). Распределение аневризм с накоплением контрастного препарата в стенке или без него значительно различалось в зависимости от оценки PHASES (p < 0.001). На долю аневризм с накоплением контрастного препарата в стенке приходилось 38 % (31/81) аневризм с баллом < 5 по сравнению с 72 % (37/51) аневризм с баллом ≥ 5.

Обсуждение

В проведенном исследовании мы проанализировали факт патологического накопления контрастного препарата в стенке ИА у пациентов, проходивших лечение в Центре нейрохирургии им. ак. Н. Н. Бурденко, и выявили взаимосвязь контрастирования стенки аневриз-

мы с ее размером и оценкой по шкале PHASES.

Размер аневризмы является общепринятым фактором риска разрыва, который следует учитывать при принятии решения о хирургическом лечении [1]. Согласно исследованию D. Backes et al. (2018) и ряду других работ, установлена прямая зависимость между вероятностью контрастирования стенки аневризмы и размером купола [4, 13, 18]. Тем не менее Edilali et al. (2014) в своем исследовании такой взаимосвязи не выявили, что, по нашему мнению, могло быть связано с выбранным авторами диапазоном размера аневризм — от 4 до 8 мм [5]. В нашем исследовании была выявлена статистически значимая взаимосвязь между размером аневризмы и накоплением контрастного препарата ее стенками: с увеличением размера купола доля аневризм с контрастированием стенок постепенно увеличивалась.

Интересным феноменом нашей работы является отсутствие взаимосвязи между формой аневризмы и накоплением контрастного препарата ее стенкой, хотя отдельные зарубежные авторы выявили корреляцию между данными

параметрами. Такое несоответствие требует дальнейшего изучения, тем более что многие нейрохирурги в рутинной практике рассматривают этот параметр как критерий нестабильности [9, 18, 19]. Более того, дискутабельным остается вопрос интерпретации «неправильной формы» аневризмы, под которым разные авторы подразумевают разные характеристики.

В последнее время были разработаны модели прогнозирования разрыва аневризмы путем объединения нескольких традиционных характеристик, связанных с разрывом. Шкала PHASES является наиболее популярной шкалой на данный момент и разработана на основе системного обзора и анализа индивидуальных данных 8382 пациентов [7]. В нашем исследовании балл по шкале PHASES был выше среди группы пациентов с аневризмами, стенка которых накапливала контрастный препарат, чем в группе без накопления последнего. Детальный анализ показал, что по мере увеличения баллов по шкале PHASES доля аневризм с накоплением стенкой контрастного препарата постепенно увеличивалась. Однако, как было продемонстрировано выше, не все факторы риска, включенные в прогностическую модель PHASES, такие как артериальная гипертензия, возраст, локализация, имели взаимосвязь с контрастированием стенки аневризмы по результатам нашего исследования. Идентичные результаты были получены и группами исследователей из Китая и Германии [11, 13].

Таким образом, наибольшую взаимосвязь с контрастированием стенки аневризмы, исходя из параметров шкалы PHASES, имел ее размер. Аневризмы менее 7 мм, согласно шкале PHASES, имеют пятилетнюю вероятность разрыва всего лишь от 0,4 до 2,4 % (кроме финской и японской популяций) [7]. Но хорошо известно, что и эти ИА подвержены разрыву. В некоторых исследованиях до 40 % всех выявленных САК за период наблюдения были обусловлены разрывами ИА размерами менее 7 мм [12]. В таком случае контрастирование стенки ИА на МРТ может стать одним из важнейших параметров оценки аневризм указанной категории пациентов, учитывая, что, по данным ряда авторов, контрастирование стенки аневризмы связано с воспалением и неоваскуляризацией, которые рассматриваются одними из главных механизмов, ведущих к разрыву [11, 15].

В нашей работе не представлены результаты гистологического анализа, хотя в мировой литературе существуют исследования взаимосвязи накопления контрастного препарата стенкой аневризмы и гистологических данных. Однако данные исследования немногочисленны и включают крайне малое количество пациентов [8, 10]. Требуется дальнейшее изучение этих изменений с увеличением общего количества информации о гистологических данных в сравнении с МР-визуализацией стенки аневризмы.

Выводы

Развитие МРТ-технологий позволило разработать методику визуализации сосудистой стенки, которая потенциально является неинвазивным методом для выявления новых диагностических маркеров, предположительно ведущих к разрыву ИА.

Накопление контрастного препарата стенкой аневризмы тесно связано с такой морфометрической характеристикой аневризмы, как высота купола и высокий балл по шкале PHASES.

Учитывая, что ценность шкалы PHASES сомнительна в отношении аневризм менее 7 мм, MP-визуализация стенки аневризмы может стать основным методом для оценки риска разрыва таких аневризм и ключевым критерием отбора пациентов на микрохирургическое лечение, не дожидаясь разрыва.

Список источников / References

- 1. Morita A., Kirino T., Hashi K., Aoki N., Fukuhara S., Hashimoto N., Nakayama T., Sakai M., Teramoto A., Tominari S., Yoshimoto T. The Natural Course of Unruptured Cerebral Aneurysms in a Japanese Cohort. *New England Journal of Medicine*. 2012. No. 26 (366). P. 2474–2482.
- 2. Jersey A. M., Foster D. M. Cerebral Aneurysm [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/books/NBK507902/?report=classic (дата обращения: 29.03.2023).
- 3. Backes D., Rinkel G. J. E., Greving J. P., Velthuis B. K., Murayama Y., Takao H., Ishibashi T., Igase M., Brugge K. G., Agid R., Jääskeläinen J.E., Lindgren A. E., Koivisto T., Fraunberg M., Matsubara S., Moroi J., Wong G. K. C., Abrigo J. M., Igase K., Matsumoto K., Wermer M. J. H., Walderveen M. A. A., Algra A., Vergouwen M. D. I. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. *Neurology*. 2017. No. 17 (88). P. 1600–1606.
- Backes D., Hendrikse J., Schaaf I., Algra A., Lindgren A. E., Verweij B. H., Rinkel G. J. E., Vergouwen M. D. I. Determinants of Gadolinium-Enhancement of the Aneurysm Wall in Unruptured Intracranial Aneurysms. *Neurosurgery*. 2018. No. 4 (83). P. 719–725.
- Edjlali M., Gentric J. C., Régent-Rodriguez C., Trystram D., Hassen W. Ben, Lion S., Nataf F., Raymond J., Wieben O., Turski P., Meder J. F., Oppenheim C., Naggara O. Does aneurysmal wall enhancement on vessel wall MRI Help to distinguish stable from unstable intracranial aneurysms? Stroke. 2014. No. 12 (45). P. 3704–3706.
- 6. Etminan N., Chang H. S., Hackenberg K., Rooij N. K. De, Vergouwen M. D. I., Rinkel G. J. E., Algra A. Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population: A Systematic Review and

- Meta-analysis. *JAMA Neurology*. 2019. No. 5 (76). P. 588–597.
- 7. Greving J. P., Wermer M. J. H., Brown R. D., Morita A., Juvela S., Yonekura M., Ishibashi T., Torner J. C., Nakayama T., Rinkel G. J. E., Algra A. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: A pooled analysis of six prospective cohort studies. *The Lancet Neurology*. 2014. No. 1 (13). P. 59–66.
- Hu P., Yang Q., Wang D. D., Guan S. C., Zhang H. Q. Wall enhancement on highresolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm. *Neuroradiology*. 2016. No. 10 (58). P. 979– 985.
- 9. Quan K., Song J., Yang Z., Wang D., An Q., Huang L., Liu P., Li P., Tian Y., Zhou L., Zhu W. Validation of Wall Enhancement as a New Imaging Biomarker of Unruptured Cerebral Aneurysm. *Stroke*. 2019. No. 6 (50). P. 1570–1573.
- 10. Shimonaga K., Matsushige T., Ishii D., Sakamoto S., Hosogai M., Kawasumi T., Kaneko M., Ono C., Kurisu, K. Clinicopathological Insights From Vessel Wall Imaging of Unruptured Intracranial Aneurysms. *Nature Reviews Neurology*. 2016. T. 12. No. 12. P. 699–713.
- 11. Larsen N., Flüh C., Saalfeld S., Voß S., Hille G., Trick D., Wodarg F., Synowitz M., Jansen O., Berg P. Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. *Neuroradiology*. 2020. No. 12 (62). P. 1627–1635.
- 12. Lee G. J., Eom K. S., Lee C., Kim D. W., Kang S. D. Rupture of Very Small Intracranial Aneurysms: Incidence and Clinical Characteristics. *Journal of Cerebrovascular and Endovascular Neurosurgery.* 2015. No. 3 (17). P. 217.
- 13. Lv N., Karmonik C., Chen S., Wang X., Fang Y., Huang Q., Liu J. Relationship between Aneurysm Wall Enhancement in Vessel Wall Magnetic Resonance Imaging and Rupture Risk of Unruptured Intra-

- cranial Aneurysms. Clinical *Neurosurgery*. 2019. No. 6 (84). P. 385–391.
- 14. Pagiola I., Mihalea C., Caroff J., Ikka L., Chalumeau V., Iacobucci M., Ozanne A., Gallas S., Marques M., Nalli D., Carrete H., Caldas J. G., Frudit M. E., Moret J., Spelle L. The PHASES score: To treat or not to treat? Retrospective evaluation of the risk of rupture of intracranial aneurysms in patients with aneurysmal subarachnoid hemorrhage. *Journal of Neuroradiology*. 2020. No. 5 (47). P. 349–352.
- 15. Samaniego E. A., Roa J. A., Hasan D. Vessel wall imaging in intracranial aneurysms 3. *Journal of NeuroInterventional Surgery*. 2019. T. 11. № 11. C. 1105–1112.
- Tulamo R., Frösen J., Hernesniemi J., Niemelä M. Inflammatory changes in the aneurysm wall: A review 4. *Journal of NeuroInterventional Surgery*. 2010. T. 2. No. 2. P. 120–130.

- 17. Wadghiri Y. Z., Hoang D. M., Leporati A., Gounis M. J., Rodríguez-Rodríguez A., Mazzanti M. L., Weaver J. P., Wakhloo A. K., Caravan P., Bogdanov A. A. Highresolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease. *Scientific Reports*. 2018. No. 1 (8). P. 1–11.
- 18. Wang G., Li W., Lei S., Ge X., Yin J., Zhang D. Relationships between aneurysmal wall enhancement and conventional risk factors in patients with intracranial aneurysm: A high-resolution MRI study. *Journal of Neuroradiology.* 2019. No. 1 (46). P. 25–28.
- 19. Zwarzany Ł., Tyburski E., Poncyljusz W. High-resolution vessel wall magnetic resonance imaging of small unruptured intracranial aneurysms. *Journal of Clinical Medicine*. 2021. No. 2 (10). P. 1–11.

Сведения об авторах / Information about the authors

Семин Кирилл Сергеевич, аспирант кафедры рентгеновских и радиоизотопных методов диагностики ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, врач-рентгенолог ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева» Минздрава России, Москва, Россия.

117997, г. Москва, ул. Саморы Машела, д. 1.

+7 (916) 586-49-88

Вклад автора: концепция и дизайн исследования, проведение исследования, сбор и обработка данных, анализ и интерпретация полученных данных, написание текста, подготовка, создание опубликованной работы.

Semin Kirill Sergeevich, Postgraduate at the Department of radiology of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, radiologist of Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. 1, ul. Samory Mashela, Moscow, 117997, Russia.

+7 (916) 586-49-88

Author's contribution: concept and design of the study, conducting the study, collecting and processing data, analyzing and interpreting the data obtained, writing the text, preparation of the published work.

Захарова Наталья Евгеньевна, профессор РАН, доктор медицинских наук, ведущий научный сотрудник, врач-рентгенолог рентгеновских и радиоизотопных методов диагностики ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, Москва, Россия.

125047, г. Москва, 4-я Тверская-Ямская ул., д. 16.

+7 (910) 443-89-25

Вклад автора: редакция, дизайн исследования.

Zakharova Natal'ya Evgen'evna, Professor of the Russian Academy of Sciences, PhD, leading researcher at the Department of radiology of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia.

16, 4th Tverskaja-Jamskaja ul., Moscow, 125047, Russia.

+7 (910) 443-89-25

Author's contribution: editorial, research design.

Элиава Шалва Шалвович, профессор, член-корреспондент РАН, доктор медицинских наук, главный научный сотрудник, заведующий 3-м нейрохирургическим отделением ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, Москва, Россия.

125047, г. Москва, 4-я Тверская-Ямская ул., д. 16.

+7 (985) 991-47-74

Вклад автора: концепция и дизайн исследования, ответственность за целостность всех частей статьи, утверждение окончательного варианта статьи.

Eliava Shalva Shalvovich, Professor, Corresponding Member of the Russian Academy of Sciences, PhD, Chief Researcher, Head of the 3rd Neurosurgical Department of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia.

16, 4th Tverskaja-Jamskaja ul., Moscow, 125047, Russia.

+7 (985) 991-47-74

Author's contribution: concept and design of the study, responsibility for the integrity of all parts of the article, approval of the final version of the article.

Коновалов Антон Николаевич, кандидат медицинских наук, научный сотрудник, нейрохирург 3-го нейрохирургического отделения ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, Москва, Россия.

125047, г. Москва, 4-я Тверская-Ямская ул., д. 16

+7 (916) 861-99-87

Вклад автора: написание статьи, сбор данных.

Konovalov Anton Nikolaevich, Candidate of Medical Sciences, researcher, neurosurgeon of the 3rd neurosurgical department of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia.

16, 4th Tverskaja-Jamskaja ul., Moscow, 125047, Russia.

+7 (916) 861-99-87

Author's contribution: article writing, data collection.

Хейреддин Али Садек, доктор медицинских наук, доцент, нейрохирург 3-го нейрохирургического отделения ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, Москва, Россия.

125047, г. Москва, 4-я Тверская-Ямская ул., д. 16.

+7 (903) 153-93-59

Вклад автора: редакция, сбор данных.

Kheireddin Ali Sadek, PhD, Associate Professor, neurosurgeon of the 3rd neurosurgical department of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia.

16, 4th Tverskaja-Jamskaja ul., Moscow, 125047, Russia.

+7 (903) 153-93-59

Author's contribution: article writing, data collection.

Калаева Диана Борисовна, медицинский физик отделения рентгеновских и радиоизотопных методов диагностики ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, Москва, Россия. 125047. г. Москва, 4-я Тверская-Ямская ул., д. 16.

+7 (916) 850-72-18

Вклад автора: сбор и обработка данных, статистическая обработка данных, редакция.

Kalaeva Diana Borisovna, medical physicist of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia.

16, 4th Tverskaja-Jamskaja ul., Moscow, 125047, Russia.

+7 (916) 850-72-18

Author's contribution: data collection and processing, statistical data processing, editing.

Баталов Артем Игоревич, кандидат медицинских наук, научный сотрудник, врач-рентгенолог отделения рентгеновских и радиоизотопных методов диагностики ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, Москва, Россия.

125047, г. Москва, 4-я Тверская-Ямская ул., д. 16

+7 (926) 066-20-50

Вклад автора: редакция, дизайн исследования.

Batalov Artem Igorevich, Candidate of Medical Sciences, researcher, radiologist of the Department of radiology of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia.

16, 4th Tverskaja-Jamskaja ul., Moscow, 125047, Russia.

+7 (926) 066-20-50

Author's contribution: editorial, research design.

Пронин Игорь Николаевич, академик РАН, профессор, доктор медицинских наук, заведующий отделением рентгеновских и радиоизотопных методов диагностики ФГАУ «НМИЦ нейрохирургии им. ак. Н. Н. Бурденко» Минздрава России, Москва, Россия.

125047, г. Москва, 4-я Тверская-Ямская ул., д. 16

+7 (916) 651-17-56

Вклад автора: концепция и дизайн исследования, ответственность за целостность всех частей статьи, утверждение окончательного варианта статьи.

Pronin Igor Nikolaevich, Academician of the Russian Academy of Sciences, Professor, PhD, Chief Researcher, Head of the Department of radiology of the N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia.

16, 4th Tverskaja-Jamskaja ul., Moscow, 125047, Russia.

+7 (916) 651-17-56

Author's contribution: concept and design of the study, responsibility for the integrity of all parts of the article, approval of the final version of the article.

Финансирование исследования и конфликт интересов

Исследование не финансировалось какими-либо источниками. Авторы заявляют, что данная работа, ее тема, предмет и содержание не затрагивают конкурирующих интересов. Мнения, изложенные в статье, принадлежат авторам рукописи. Авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли существенный вклад в разработку концепции, подготовку статьи, прочли и одобрили финальную версию перед публикацией).

Research funding and conflict of interest

The study was not funded by any sources. The authors state that this work, its topic, subject and content do not affect competing interests. The opinions expressed in the article belong to the authors of the manuscript. The authors confirm the compliance of their authorship with the international ICMJE criteria (all authors have made a significant contribution to the development of the concept, the preparation of the article, read and approved the final version before publication).

Статья поступила в редакцию 20.10.2023; одобрена после рецензирования 18.12.2023; принята к публикации 12.01.2024.

The article was submitted 20.10.2023; approved after reviewing 18.12.2023; accepted for publication 12.01.2024.