Automatic Analysis of the Quantitative Characteristics of the Hippocampus Using Magnetic Resonance Imaging of the Brain for the Diagnosis Alzheimer's Disease (Review of Literature and Results of Own Research)
Abstract
The aim of the study is to analyze the known mathematical foundations, methods and algorithms for diagnosing Alzheimer's symptoms on the basis of magnetic resonance imaging (MRI). The develop a new mathematical apparatus and algorithmic support for the automated computation of hippocampal parameters as one of the most informative brain structures, make a proposal for Alzheimer's disease. The developed approach is based on a sequential analysis of a series of magnetic resonance images of the sagittal projection, the iterative processing of each image for the purpose of automatic detection of the hippocampus and subsequent measurement of its volumetric characteristics and characteristics of the regions and structures of the brain adjacent to the hippocampus. At the final step of the proposed approach, the vector of geometric linear and volumetric parameters of the hippocampus and adjacent regions is transferred to the neural network procedure for analyzing and deciding whether the hippocampus meets the norm or the presence of signs of Alzheimer's disease. Thus, the approach of automatic detection, calculation of parameters and formation of the assumption about the presence or absence of Alzheimer's disease, the novelty of which is a completely automatic process of calculations and decision making, is simultaneously proposed, while providing the accuracy of localization of the hippocampus and measuring its characteristics, areas used as a feature space for decision-making on the detection of a disease or health condition of the patient; The significance of the approach being developed lies in the subsequent construction of a specialized domestic software product that allows automatic and automated analysis of MRI images of the brain in the interests of timely detection of Alzheimer's disease and instrumental evaluation of the dynamics of its development.
About the Authors
Vladimir N. GridinRussian Federation
M. D. Tech., Professor, Head of Researches
Maxim I. Truphanov
Russian Federation
Ph. D. Tech., Associate Professor, Director
Vladimir I. Solodovnikov
Russian Federation
Ph. D. Tech., Head of Laboratory
Vladimir S. Panishchev
Russian Federation
Ph. D. Tech., Senior Researcher
Valentin E. Sinitsyn
Russian Federation
M. D. Med., Professor, Chief Researcher
Nikolay N. Yakhno
Russian Federation
M. D. Med., Academician of RAS, Professor, Chief Researcher, Design Information Technologies Сenter of RAS; Head of the Research Department of Neuroscience Research Center, Professor of Neurology, Medical Faculty, Director of Scientific Educational Clinical Centre of Neurology, I. M. Sechenov First Moscow State Medical University
References
1. Anan’yeva N. I., Yezhova R. V., Gal’sman I. Ye., Davletkhanova M. A., Rostovtseva T. M., Stulov I. K., Vasserman L. I., Shmeleva L. M., Chuykova A. V., Sorokina A. V., Ivanov M. V. Hippocampus: radial anatomy, structural variants. Luchevaya diagnostika i terapiya. 2015. No. 1 (6). С. 39–44 (in Russian).
2. Vartanov A. V., Anisimov N. V., Ushakov B. L., Pirogov Yu. A., Kozlovskiy S. A., Gapiyenko G. V. The method of automatic isolation of biological tissues from a complex of MRI images. Med. fizika. 2004. No. 1. Р. 31–35 (in Russian).
3. Vartanov A. V., Kozlovskiy S. A., Skvortsova V. B. et al. Human memory and anatomical features of the hippocampus. Vestnik Mosk. un-ta. Ser. 14. Psikhologiya. 2009. No. 4. P. 3–16 (in Russian).
4. Gridin V. N., Titov V. S., Trufanov M. I. Adaptive vision systems. Tsentr inform. tekhnologiy v proyektirovanii RAN. SPb.: Nauka, 2009. 441 p. (in Russian).
5. Yezhova R. V., Gal'sman I. Ye., Davletkhanova M. A. Comparative analysis of FREESURFER and DISPLAY Software packages using the example of the voxelbase MR morphometry of the hippocampal formation. Tambov: Gramota, 2015. No. 6. Р. 67–69 (in Russian).
6. Kaznacheyeva A. O. Fractal analysis of noisy magnetic resonance tomograms. Al’manakh sovremennoy nauki i obrazovaniya. Tambov: Gramota, 2013. No. 2. P. 73–76 (in Russian).
7. Lobzin V. Yu., Kiselov V. N., Fokin V. A., Yemelin A. Yu., Vorob’yov S. V., Lupanov I. A., Sokolov A. V., Yefimtsev A. Yu. The use of magnetic resonance morphometry in the diagnosis of Alzheimer's disease and vascular cognitive disorders. Vestnik Ross. voyenno-meditsinskoy akad. 2013. No. 3 (43). P. 1–7 (in Russian).
8. Magonov Ye. P., Katayeva G. V., Trofimova T. N. Modern methods of automatic calculation of the volume of intracranial space with MRI-morphometry of the brain. Vestnik Novgorodskogo Gos. Univer. im. Yaroslava Mudrogo. 2015. No. 2 (85). P. 98–104 (in Russian).
9. Sidorova M. V., Vakolyuk I. A. Determination of structural changes in the hippocampus in the early period of modeling of post-traumatic stress disorder in rats // Mezhdunar. zhur. Prikladnykh i fundamental’nykh issledovaniy. 2017. No. 7–1. P. 106–110 (in Russian).
10. Tishkina A. O. The method of automatic quantitative analysis of microphotographs of brain sections. Neyrokhimiya. 2009. V. 26. No. 4. P. 341–346 (in Russian).
11. Totolyan A. A., Trofimova T. N. The possibilities of magnetic resonance imaging in assessing the structures of brain changes in patients with temporal epilepsy. Rus. Electronic J. of Radiol. 2011. V. 1. No. 1. P. 11–16.
12. Furman Ya. A. Introduction to contour analysis and its applications to signal and image processing. M.: Fizmatlit, 2002. 592 p. (in Russian).
13. Khaymov D. A., Fokin V. A., Yefimtsev A. Yu. et al. Multi-vocal MR-morphometry in assessing the atrophy of brain structures in patients with Parkinson’s disease. Doktor.Ru. 2012. No. 5 (73). P. 21– 28 (in Russian).
14. Yakhno N. N., Zakharov V. V., Lokshina A. B. Dementia: hand-in for doctors. 3rd ed. M.: MEDpress-inform, 2011. 272 p. (in Russian).
15. Atkins M. S., Mackiewich B. Automatic segmentation of the brain in MRI / conference on visualisation in biomedical computing, 96, Springer, Verlag lecture Notes in Computer Science. 1996. V. 1131. Р. 210–216.
16. Chow N., Hwang K., Hurtz S., Green A., Somme J., Thompson P., Elashoff D., Jack C., Weiner M., Apostolova L. Alzheimer's disease neuroimaging initiative. Comparing 3 T and 1,5 T MRI for mapping hippocampal atrophy in the Alzheimer's disease neuroimaging Initiative // AJNR Am. J. Neuroradiol. 2015. V. 36 (4). Р. 653–660.
17. Chupin M., Mukuna Bantumbakulu A. R., Hasboun D., Bardinet E., Baillet S., Kinkingnéhun S., Lemieux L., Dubois B., Garnero L. Automated segmentation of the hippocampus and the amygdala driven by competition and anatomical priors: method and validation on healthy subjects and patients with Alzheimer's disease // Neuroimage. 2007. № 34. P. 996–1019.
18. Chupin M., Gerardin E., Cuingnet R. et al. Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive im pairment applied on data from ADNI // Hippocampus. 2009. V. 19. Р. 579–587.
19. Cuingnet R., Gerardin E., Tessieras J. et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database // Neuroimage. 2011. № 56. P. 766–781.
20. Freund Yu., Shapire R. A decision-theoretic generalization of online learning and an application to boosting // J. of Computer and System Sciences. 1997. V. 55. Р. 119–139.
21. Gerardin E., Chételat G., Chupin M., Cuingnet R., Desgranges B., Kim H. et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging // Neuroimage. 2009. Р. 1476–1486.
22. Jing Z., Yu C., Jiang G., Liu W., Tong L.. 3D texture analysis on MRI images of Alzheimer’s disease // Brain Imaging and Behavior. 2012. P. 61–69.
23. Kim P., Lee Y., Jung Y., Cho J., Myoung K. Liver extraction in the abdominal CT image by watershed segmentation algorithm // World Congress on Medical Physics and Biomedical Engineering, 2006. IFMBE Proc. 2007. V. 14. P. 2563–2566.
24. McLean J. The investigation of hippocampal and hippocampal subfield volumetry, morphology and metabolites using 3T MRI // Thesis for the degree of Ph. D. University Glasgow, 2012. 354 р.
25. Morra J. H., Tu Z., Toga A. W. et al. Machine learning for brain image segmentation //
26. Gonzalez F. A., Romero E., eds. Biomedical image analysis and machine learning technologies // Hershey: Medical Information Science References. 2009. P. 851–874.
27. Kodama N., Kawase Yu., Okamoto K. Application of texture analysis to differentiation of dementia with lewy bodies from alzheimer’s disease on magnetic resonance images // IFMBE Proceedings. 2006. V. 14/3. P. 1444–1446.
28. Patil M. M., Yardi A. R. Diagnosis of Alzheimer’s disease from 3D MR images with statistical features of hippocampus / V. V. Das and N. Thankachan (eds.): CIIT, 2011. CCIS 250. P. 744–749.
29. Rabeh A., Benzarti F., Amiri H. Diagnosis of Alzheimer disease from MRI images of the brain throughout time // Proceedings of the 16th International conference on hybrid intelligent systems (HIS 2016), Advances in Intelligent Systems and Computing. P. 219–226.
Review
For citations:
Gridin V., Truphanov M., Solodovnikov V., Panishchev V., Sinitsyn V., Yakhno N. Automatic Analysis of the Quantitative Characteristics of the Hippocampus Using Magnetic Resonance Imaging of the Brain for the Diagnosis Alzheimer's Disease (Review of Literature and Results of Own Research). Radiology - Practice. 2017;(6):41-59. (In Russ.)















