Preview

Radiology - Practice

Advanced search

Application of Post-Contrast T2 FLAIR Imaging in the Diagnosis of Multiple Sclerosis

https://doi.org/10.52560/2713-0118-2025-6-13-28

Abstract

Magnetic resonance imaging (MRI) is one of the key tools for confirming the diagnosis of multiple sclerosis (MS). It also enables differential diagnosis, monitoring of treatment effectiveness, and assessment of disease activity using contrast agents. T1-weighted images are traditionally considered the gold standard for detecting contrast enhancement in demyelinating lesions. However, recent hypotheses suggest that post-contrast T2 FLAIR mode may increase the diagnostic yield in identifying active MS lesions. This study evaluates the potential of postcontrast T2 FLAIR imaging in the diagnosis of multiple sclerosis.

Aim. To assess the role of postcontrast T2 FLAIR imaging in detecting demyelinating lesions in the brain in patients with multiple sclerosis.

Materials and Methods. The study included 60 patients with multiple sclerosis aged 20– 59 years. MRI was performed on two scanners: Siemens Magnetom Avanto (1.5 T, n = 30) and Siemens Magnetom Prisma (3.0 T, n = 30). The protocol included standard modes, as well as T1 MPRAGE and T2 FLAIR before and after administration of gadobutrol (0.1 mmol/kg). Contrast enhancement was evaluated using the contrast index (CI) before and after contrast administration, followed by calculation of the signal intensity increase (ΔCI). Lesions were also compared based on the pattern of contrast accumulation in T1 MPRAGE and T2 FLAIR modes. The study further assessed whether visual contrast enhancement in T2 FLAIR could predict enhancement in T1 MPRAGE, and whether ΔCI in T2 FLAIR could be used as a predictive marker.

Results. A total of 132 demyelinating lesions were identified in 60 patients undergoing contrast-enhanced MRI. Of these, 35 lesions (26.5 %) showed enhancement in the T1 MPRAGE mode. Notably, 16.5 % of lesions showed enhancement in T2 FLAIR despite the absence of enhancement in T1 MPRAGE. There was a statistically significant correlation between enhancement in T2 FLAIR and T1 MPRAGE (p < 0.001). CI and ΔCI calculations confirmed intergroup differences. The diagnostic performance of T2 FLAIR visual analysis in predicting T1 MPRAGE enhancement showed a sensitivity of 94.3 %, specificity of 83.5 %, and accuracy of 86.4 %. ROC analysis revealed an AUC of 0.934 (95 % CI: 0.875–0.994), indicating excellent predictive ability of ΔCI in T2 FLAIR for contrast accumulation in T1 MPRAGE.

Conclusion. Incorporating post-contrast T2 FLAIR into standard MRI protocols for MS patients is a valuable diagnostic tool that may provide additional information. Further studies with larger cohorts are warranted to explore the full potential of post-contrast T2 FLAIR imaging in clinical practice.

About the Authors

D. S. Stegura
Russian Сenter of Neurology and Neurosciences
Russian Federation

Stegura Diana Sergeevna, radiologist, Graduate student of the Department of Neuroradiology

Moscow



R. N. Konovalov
Russian Сenter of Neurology and Neurosciences
Russian Federation

Konovalov Rodion Nikolaevich, Ph. D. Med., radiologist, Senior researcher, Department of Neuroradiology  

Mosсow



I. A. Berdalina
Russian Сenter of Neurology and Neurosciences
Russian Federation

Berdalina Irina Alexandrovna, Statistician, Department of Higher Qualification Training, Institute of Medical Education and Professional Development 

Mosсow



V. V. Bryukhov
Russian Сenter of Neurology and Neurosciences
Russian Federation

Bryukhov Vasiliy Valerievich, Ph. D. Med., radiologist, Senior researcher, Department of Neuroradiology

Mosсow



M. V. Krotenkova
Russian Сenter of Neurology and Neurosciences
Russian Federation

Krotenkova Marina Viktorovna, M. D. Med., chief researcher, associate professor, radiologist, Head of Department of Neuroradiology

Mosсow



References

1. Karamazanovsky G. G., Shimanovsky N. L. Contrast Agents for Radiological Diagnostics. Handbook. Moscow: GEOTARMedia, 2022. 672 p. (In Russ.).

2. Krotenkova I. A., Bryukhov V. V., Konovalov R. N., Zakharova M. N., Krotenkova M. V. Magnetic resonance imaging in the differential diagnosis of multiple sclerosis and other demyelinating diseases. J. of Radiology and Nuclear Medicine. 2019; 100(4):229-36. (In Russ.). https://doi.org/10.20862/0042-4676-2019-100-4-229-236

3. Absinta M., Vuolo L., Rao A., Nair G., Sati P., Cortese I. C., Ohayon J., Fenton K., Reyes-Mantilla M. I., Maric D., Calabresi P. A., Butman J. A., Pardo C. A., Reich D. S. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 2015;85(1):18-28. https://doi.org/10.1212/WNL.0000000000001587

4. Absinta M., Reich D. S. Imaging of meningeal inflammation should become part of the routine MRI protocol – Yes. Multiple Sclerosis J. 2019;25(3):330-331. https://doi.org/10.1177/1352458518794082

5. Ahn S. J., Taoka T., Moon W. J., Naganawa S. Contrast-Enhanced Fluid-Attenuated Inversion Recovery in Neuroimaging: A Narrative Review on Clinical Applications and Technical Advances. J. Magn Reson Imaging. 2022;56(2):341-353. https://doi.org/10.1002/jmri.28117

6. Bagheri M. H., Meshksar A., Nabavizadeh S. A., Borhani-Haghighi A., Ashjazadeh N., Nikseresht A. R. Diagnostic value of contrast-enhanced fluid-attenuated inversion-recovery and delayed contrastenhanced brain MRI in multiple sclerosis. Acad Radiol. 2008;15(1):15-23. https://doi.org/10.1016/j.acra.2007.07.022

7. Westbrook C., Talbot J. MRI in practice. Description: Fifth edition. Hoboken, NJ: Wiley, 2018. ISBN 9781119391999

8. Dal-Bianco A., Grabner G., Kronnerwetter C., Weber M., Höftberger R., Berger T., Auff E., Leutmezer F., Trattnig S., Lassmann H., Bagnato F., Hametner S. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 2017; 133(1):25-42. https://doi.org/10.1007/s00401-016-1636-z

9. Dickinson P. J., Jones-Woods S., Cissell D. D. Abrogation of fluid suppression in intracranial postcontrast fluid-attenuated inversion recovery magnetic resonance imaging: A clinical and phantom study. Vet Radiol Ultrasound. 2018;59(4):432- 443. https://doi.org/10.1111/vru.12605

10. Ercan N., Gultekin S., Celik H., Tali T. E., Oner Y. A., Erbas G. Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am. J. Neuroradiol. 2004;25(5):761-5.

11. Essig M., Knopp M. V., Schoenberg S. O., Hawighorst H., Wenz F., Debus J., van Kaick G. Cerebral gliomas and metastases: assessment with contrast-enhanced fast fluid-attenuated inversionrecovery MR imaging. Radiology. 1999; 210(2):551-7. https://doi.org/10.1148/radiology.210.2.r99ja22551

12. Frischer J. M., Weigand S. D., Guo Y., Kale N., Parisi J. E., Pirko I., Mandrekar J., Bramow S., Metz I., Brück W., Lassmann H., Lucchinetti C. F. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78(5):710- 21. https://doi.org/10.1002/ana.24497

13. Gaitán M. I., Shea C. D., Evangelou I. E., Stone R. D., Fenton K. M., Bielekova B., Massacesi L., Reich D. S. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol. 2011; 70(1):22-9. https://doi.org/10.1002/ana.22472

14. Harrison D. M., Li X., Liu H., Jones C. K., Caffo B., Calabresi P. A., van Zijl P. Lesion Heterogeneity on High-Field Susceptibility MRI Is Associated with Multiple Sclerosis Severity. AJNR Am. J. Neuroradiol. 2016;37(8):1447-53. https://doi.org/10.3174/ajnr.A4726

15. Harrison D. M., Allette Y. M., Zeng Y., Cohen A., Dahal S., Choi S., Zhuo J., Hua J. Meningeal contrast enhancement in multiple sclerosis: assessment of field strength, acquisition delay, and clinical relevance. PLoS One. 2024;19(5): e0300298. https://doi.org/10.1371/journal.pone.0300298

16. Kuhlmann T., Moccia M., Coetzee T., Cohen J. A., Correale J., Graves J., Marrie R. A., Montalban X., Yong V. W., Thompson A. J., Reich D. S. International Advisory Committee on Clinical Trials in Multiple Sclerosis. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78-88. https://doi.org/10.1016/S1474-4422(22) 00289-7

17. Lee E. K., Lee E. J., Kim S., Lee Y. S. Importance of Contrast-Enhanced FluidAttenuated Inversion Recovery Magnetic Resonance Imaging in Various Intracranial Pathologic Conditions. Korean J. Radiol. 2016;17(1):127-41. https://doi.org/10.3348/kjr.2016.17.1.127

18. Mathews V. P., Caldemeyer K. S., Lowe M. J., Greenspan S. L., Weber D. M., Ulmer J. L. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology. 1999;211(1):257-63. https://doi.org/ 10.1148/radiology.211.1.r99mr25257

19. Melhem E. R., Bert R. J., Walker R. E. Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain. AJR Am. J. Roentgenol. 1998; 171(3):803-7. https://doi.org/10.2214/ajr.171.3.9725320

20. Mustafa W., Ali S., Elgendy N., Salama S., Sorogy L., Mohsen M. Role of contrastenhanced FLAIR MRI in diagnosis of intracranial lesions. Egypt J. Neurol. Psychiatry Neurosurg. 2021; 57:108. https://doi.org/10.1186/s41983-021-00360-x

21. Okar S. V., Dieckhaus H., Beck E. S., Gaitán M. I., Norato G., Pham D. L., Absinta M., Cortese I. C., Fletcher A., Jacobson S., Nair G., Reich D. S. Highly Sensitive 3-Tesla Real Inversion Recovery MRI Detects Leptomeningeal Contrast Enhancement in Chronic Active Multiple Sclerosis. Invest Radiol. 2024;59(3):243-251. https://doi.org/10.1097/RLI.0000000000001011

22. Park Y. W., Ahn S. J. Comparison of Contrast-Enhanced T2 FLAIR and 3D T1 Black-Blood Fast Spin-Echo for Detection of Leptomeningeal Metastases. Investigative Magnetic Resonance Imaging. 2018;22(2):86-93. https://doi.org/10.13104/imri.2018. 22.2.86

23. Parmar H., Sitoh Y. Y., Anand P., Chua V., Hui F. Contrast-enhanced flair imaging in the evaluation of infectious leptomeningeal diseases. Eur. J. Radiol. 2006;58 (1):89-95. https://doi.org/10.1016/j.ejrad.2005.11.012

24. Tsuchiya K., Katase S., Yoshino A., Hachiya J. FLAIR MR imaging for diagnosing intracranial meningeal carcinomatosis. AJR Am. J. Roentgenol. 2001;176(6): 1585-8. https://doi.org/10.2214/ajr.176.6.1761585

25. Tsuchiya K., Katase S., Yoshino A., Hachiya J. Pre- and postcontrast FLAIR MR imaging in the diagnosis of intracranial meningeal pathology. Radiat Med. 2000;18 (6):363-8.

26. Barkhof F., Reich D. S., Oh J., Rocca M. A., Li D. K. B., Sati P., Azevedo C. J., Bagnato F., Calabresi P. A., Ciccarelli O., Dwyer M. G., DeLuca G. C., De Stefano N., Enzinger C., Filippi M., Granziera C., Halper J., Henry R. G., Gasperini C., Gauthier S., Kappos L., Laule C., New some S. D., Montalban X., Morrow S. A., Schoonheim M. M., Sicotte N., Toosy A., Wilken J., Yousry T., Sastre-Garriga J., Traboulsee A., Ontaneda D., Rovira À. Magnetic Resonance Imaging Network in Multiple Sclerosis; Consortium of Multiple Sclerosis Centers; North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group. 2024 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI for the diagnosis of multiple sclerosis. Lancet Neurol. 2025;24(10):866-879. https://doi.org/10.1016/S1474-4422(25)00304-7

27. Zurawski J., Lassmann H., Bakshi R. Use of Magnetic Resonance Imaging to Visualize Leptomeningeal Inflammation in Patients With Multiple Sclerosis: A Review. JAMA Neurol. 2017;74(1):100-109. https://doi.org/10.1001/jamaneurol.2016.4237


Supplementary files

Review

For citations:


Stegura D.S., Konovalov R.N., Berdalina I.A., Bryukhov V.V., Krotenkova M.V. Application of Post-Contrast T2 FLAIR Imaging in the Diagnosis of Multiple Sclerosis. Radiology - Practice. 2025;(6):13-28. (In Russ.) https://doi.org/10.52560/2713-0118-2025-6-13-28

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0118 (Online)