Preview

Radiology - Practice

Advanced search

Application of Artificial Intelligence in Diseases of the Musculoskeletal Systems (Literature Review)

https://doi.org/10.52560/2713-0118-2025-4-81-91

Abstract

Aim. The analysis of scientific articles devoted to the use of artificial intelligence (AI) in diseases of the musculoskeletal system (ODE) to determine the effectiveness of the introduction of new technologies based on artificial intelligence.

Materials and Methods. For the literature review, the most cited studies on the use of AI in the diagnosis and treatment of ODE were selected, which are publicly available in scientific databases.

Results. The research described in the review of scientific articles demonstrates the great potential of artificial intelligence in the diagnosis of diseases of the musculoskeletal system and shows how it can be useful for doctors and patients.

Conclusion. The introduction of artificial intelligence in orthopedics opens up new horizons for improving the quality of medical care. Specialized equipment and mobile applications not only facilitate the monitoring of patients' condition, but also make it more personalized, which contributes to rapid and effective rehabilitation. New technologies make it possible to minimize hospital treatment time and optimize resources. Artificial intelligence advances diagnosis and treatment to a new level by predicting complex clinical outcomes with high accuracy.

About the Author

Yu. A. Ushakova
Federal State Budgetary Educational Institution of Higher Education «I. P.Pavlov Ryazan State Medical University» of the Ministry of Healthcare of the Russian Federation
Russian Federation

Ushakova Yulia Alekseevna, 6th year student

Ryazan



References

1. Musculoskeletal health. World Health Organization. URL: https://www.who.int/ru/news-room/fact-sheets/detail/musculoskeletal-conditions (date of application: 29.07.2024). (In Russ.).

2. Bini S. A., Schilling P. L., Patel S. P., Kalore N. V., Ast M. P., Maratt J. D., Schuett D. J., Lawrie C. M., Chung C. C., Steele G. D. Digital Orthopaedics: A Glimpse Into the Future in the Midst of a Pandemic. J. Arthroplasty. 2020;35(7S):S68-S73. https://doi.org/10.1016/j.arth.2020.04.048

3. Bloomfield R. A., Williams H. A., Broberg J. S., Lanting B. A., McIsaac K. A., Teeter M. G. Machine Learning Groups Patients by Early Functional Improvement Likelihood Based on Wearable Sensor Instrumented Preoperative Timed-Up-and-Go Tests. J. Arthroplasty. 2019;34(10):2267-2271. https://doi.org/10.1016/j.arth.2019.05.061

4. Cilla M., Borgiani E., Martínez J., Duda G. N., Checa S. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant. PLoS One. 2017;12(9): e0183755. https://doi.org/10.1371/journal.pone.0183755

5. Dennis B. M., Stonko D. P., Callcut R. A., Sid well R. A., Stassen N. A., Cohen M. J., Cotton B. A., Guillamondegui O. D. Artificial neural networks can predict trauma volume and acuity regardless of center size and geography: A multicenter study. J. Trauma Acute Care Surg. 2019;87(1):181-187. https://doi.org/10.1097/TA.0000000000002320

6. Dooley J. H., Ozdenerol E., Sharpe J. P., Magnotti L. J., Croce M. A., Fischer P. E. Location, location, location: Utilizing Needs-Based Assessment of Trauma Systems-2 in trauma system planning. J. Trauma Acute Care Surg. 2020;88(1):94-100. https://doi.org/10.1097/TA.0000000000002463

7. Galbusera F., Casaroli G., Bassani T. Artificial intelligence and machine lear ning in spine research. JOR Spine. 2019;2(1): e1044. https://doi.org/10.1002/jsp2.1044

8. Ghaffar Nia N., Kaplanoglu E., Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. J. Discov Artif Intell. 2023;3(5). https://doi.org/10.1007/s44163-023-00049-5

9. Hosny A., Parmar C., Quackenbush J., Schwartz L. H., Aerts H. J. W. L. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. https://doi.org/10.1038/s41568-018-0016-5

10. Jodeiri A., Zoroofi R. A., Hiasa Y., Takao M., Sugano N., Sato Y., Otake Y. Fully automatic estimation of pelvic sagittal in clination from anterior-posterior radio graphy image using deep learning frame work. Comput Methods Programs Biomed. 2020;184:105282. https://doi.org/10.1016/j.cmpb.2019.105282

11. Karnuta J. M., Haeberle H. S., Luu B. C., Roth A. L., Molloy R. M., Nystrom L. M., Piuzzi N. S., Schaffer J. L., Chen A. F., Iorio R., Krebs V. E., Ramkumar P. N. Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Hip. J. Arthroplasty. 2021;36(7S):S290-S294.e1. https://doi.org/10.1016/j.arth.2020.11.015

12. Karnuta J. M., Navarro S. M., Haeberle H. S., Billow D. G., Krebs V. E., Ramkumar P. N. Bundled Care for Hip Fractures: A Machine-Learning Approach to an Untenable Patient-Specific Payment Model. J. Orthop Trauma. 2019;33(7):324-330. https://doi.org/10.1097/BOT.0000000000001454

13. Kim Y. J., Ganbold B., Kim K. G. Web-Based Spine Segmentation Using Deep Learning in Computed Tomogra phy Images. Healthc Inform Res. 2020;26(1):61-67. https://doi.org/10.4258/hir.2020.26.1.61

14. Lee Han-soo. Ministry approves Korea’s first AI-based medical device. Korea Bio­ medical Review. URL: https://www.koreabiomed.com/news/articleView.html?idxno=3294 (date of application: 29.07.2024).

15. Lee K. C., Hsu C. C., Lin T. C., Chiang H. F., Horng G. J., Chen K. T. Prediction of Prognosis in Patients with Trauma by Using Machine Learning. Medicina (Kaunas). 2022;58(10):1379. https://doi.org/10.3390/medicina58101379

16. Li Y. Y., Wang J. J., Huang S. H., Kuo C. L., Chen J. Y., Liu C. F., Chu C. C. Implementation of a machine learning application in preoperative risk assessment for hip repair surgery. BMC Anes­thesiol. 2022;22(1):116. https://doi.org/10.1186/s12871-022-01648-y

17. Liu F., Zhou Z., Jang H., Samsonov A., Zhao G., Kijowski R. Deep convolutional neu ral network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 2018;79(4):2379-2391. https://doi.org/10.1002/mrm.26841

18. Momtazmanesh S., Nowroozi A., Rezaei N. Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Per spectives: A State-of-the-Art Review. Rheu matol Ther. 2022;9(5):1249-1304. https://doi.org/10.1007/s40744-022-00475-4

19. Myers T. G., Ramkumar P. N., Ricciardi B. F., Urish K. L., Kipper J., Ketonis C. Artificial Intelligence and Orthopaedics: An Introduction for Clinicians. J. Bone Joint Surg Am. 2020;102(9):830-840. https://doi.org/10.2106/JBJS.19.01128

20. Olczak J., Fahlberg N., Maki A., Razavian A. S., Jilert A., Stark A., Sköl denberg O., Gordon M. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 2017;88(6): 581-586. https://doi.org/10.1080/17453674.2017.1344459

21. Pranata Y. D., Wang K. C., Wang J. C., Idram I., Lai J. Y., Liu J. W., Hsieh I. H. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT ima ges. Comput Methods Programs Biomed. 2019;171:27-37. https://doi.org/10.1016/j.cmpb.2019.02.006

22. Ramkumar P. N., Haeberle H. S., Bloomfield M. R., Schaffer J. L., Kamath A. F., Patterson B. M., Krebs V. E. Artificial Intelligence and Arthroplasty at a Single Institution: Real-World Applications of Machine Learning to Big Data, Value-Ba sed Care, Mobile Health, and Remote Patient Monitoring. J. Arthroplasty. 2019;34(10): 2204-2209. https://doi.org/10.1016/j.arth.2019.06.018

23. Shah R. F., Martinez A. M., Pedoia V., Majumdar S., Vail T. P., Bini S. A. Variation in the Thickness of Knee Cartilage. The Use of a Novel Machine Learning Algo rithm for Cartilage Segmentation of Magnetic Resonance Images. J. Arthroplasty. 2019; 34(10):2210-2215. https://doi.org/10.1016/j.arth.2019.07.022

24. Urakawa T., Tanaka Y., Goto S., Matsuzawa H., Watanabe K., Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol. 2019;48(2):239-244. https://doi.org/10.1007/s00256-018-3016-3


Review

For citations:


Ushakova Yu.A. Application of Artificial Intelligence in Diseases of the Musculoskeletal Systems (Literature Review). Radiology - Practice. 2025;(4):81-91. (In Russ.) https://doi.org/10.52560/2713-0118-2025-4-81-91

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0118 (Online)