Preview

Radiology - Practice

Advanced search

Evaluation of Metal Structures Heating During Magnetic Resonance Imaging

Abstract

The paper presents a description of the nature of thermal processes and a method for metal structures heating evaluating in MRI, as well as the results of a series of experimental studies: passive implants and other metal objects were placed in the isocenter of the magnet and on the periphery, while being in the air, water, in gel or under heat insulating material. To study the heating, T2 FASE pulse sequence was used, and the temperature of the samples was recorded using fiber optic sensors. It is shown that the heating of metal structures is determined by both the properties of the object and the characteristics of the MR tomograph, as well as the scanning conditions, materials surrounding the object and its position in the MRI gantry. For the peripheral location of the phantom and an extended stainless-steel implant, a maximum heating of 2,5 °C was recorded in 15 minutes. When placed at the isocenter, the temperature of the samples increased by no more than 0,5 °C in 15 minutes, which indicates the possibility of conducting an MR study without exceeding the limitations associated with the amount of tissue heating. The results of the work demonstrate the necessity to take into account the magnitude of the possible heating of a metal object when deciding on the possibility of an MRI study for patients with metal structures.

About the Authors

D. S. Semenov
Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow
Russian Federation


K. A. Sergunova
Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow
Russian Federation


E. S. Ahmad
Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow
Russian Federation


A. V. Petraikin
Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow
Russian Federation


Yu. A. Vasil’Ev
Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Department of Healthcare of Moscow
Russian Federation


V. A. Yatseev
CTO Optiz-Monitoring Ltd
Russian Federation


References

1. Лучаков Ю. И., Шабанов П. Д. Перенос тепла в коже // Обзоры по клинической фармакологии и лекарственной терапии. 2017. Т. 15. № 1. С. 68-71.

2. Матвеев А. Н. Электричество и магнетизм. М.: Высшая школа, 1983. 464 с.

3. Ненарокомов А. В., Семенов Д. С., Домбровский Л. А. Идентификация математических моделей теплообмена с использованием бесконтактных измерений // Тепловые процессы в технике. 2018. Т. 10. № 7-8. C. 354-360.

4. Ремизов А. Н. Медицинская и биологическая физика. М.: Высшая школа, 1999. 616 с.

5. Feng D. X. et al. Evaluation of 39 medical implants at 7,0 T // Br. J. Radiol. 2015. №. 88. P. 1056.

6. Gilbert K. M., Scholl T. J., Chronik B. A. RF coil loading measurements between 1 and 50 MHz to guide field-cycled MRI system design // Concepts Magn. Reson. Part B Magn. Reson. Eng. 2010. V. 37. № 3. P. 75-85.

7. Kanal E. et al. ACR guidance document on MR safe practices: 2013 // J. Magn. Reson. Imag. 2013. V. 37. № 3. P. 501-530.

8. Keevil S. Safety in magnetic resonance imaging // Med. Phys. Int. J. 2016. V. 4. № 1. P. 26-34.

9. Mattei E. et al. Complexity of MRI induced heating on metallic leads: Experimental measurements of 374 configurations // Biomed. Eng. Online. 2008. V. 7. P. 1-16.

10. Panych L. P., Madore B. The physics of MRI safety // J. Magn. Reson. Imag. 2018. V. 47. № 1. P. 28-43.

11. Sammet S. Magnetic resonance safety // Abdominal Radiol. 2016. V. 41. № 3. P. 444-451.

12. Tsitovich P. B. et al. Six-coordinate iron (II) and сobalt (II) paraSHIFT agents for measuring temperature by magnetic resonance spectroscopy // Inorganic Chem. 2016. V. 55. № 2. P. 700-716.

13. Yeo D. T. B. et al. Local specific absorption rate in high-pass birdcage and transverse electromagnetic body coils for multiple human body models in clinical landmark positions at 3 T // J. Magn. Reson. Imaging. 2011. V. 33. № 5. P. 1209- 1217.

14. ASTM F2182-11a Standard test method for measurement of radio frequency induced heating on or near passive implants during magnetic resonance imaging. [Электронный ресурс]. URL: https://www.astm.org/Standards/F2182.htm (accessed: 24.04.2018).

15. ГОСТ Р МЭК 60601-2-33-2013. Изделия медицинские электрические. Ч. 2-

16. Частные требования безопасности с учетом основных функциональных характеристик к медицинскому диагностическому оборудованию, работающему на основе магнитного резонанса.


Review

For citations:


Semenov D.S., Sergunova K.A., Ahmad E.S., Petraikin A.V., Vasil’Ev Yu.A., Yatseev V.A. Evaluation of Metal Structures Heating During Magnetic Resonance Imaging. Radiology - Practice. 2019;(3):30-40. (In Russ.)

Views: 310


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0118 (Online)