Возможности объемной эхографии для исследовании ЦНС плода в первом триместре беременности.
https://doi.org/10.52560/2713-0118-2025-5-89-102
Аннотация
Введение. Последние полвека характеризуются бурным развитием цифровых технологий и их использованием в разных сферах жизнедеятельности. Активно развивается процесс цифровизации и в различных отраслях медицины. К числу последнего можно отнести и объемную эхографию, обладающую множеством преимуществ перед 2D-визуализацией в возможности получения новой информации об особенностях и характере патологических изменений в формировании аномалий центральной нервной системы (ЦНС) плода.
Цель исследования. Анализ научных публикаций, посвященных применению объемной эхографии с возможностью дальнейшего использования файлов трехмерных ультразвуковых данных для исследования ЦНС плода в I триместре беременности.
Материалы и методы. Обзор проведен на основе анализа баз данных PubMed, eLibrary, Библиотека Cohrane, UpToDate, MEDLINE, Embase с 2011 по 2024 г. Количество проанализированных источников — 42.
Результаты. Получены данные о современных возможностях ультразвуковой диагностики в I триместре беременности для раннего выявления аномалий ЦНС плода.
Выводы. В научной литературе подчеркивается актуальность и клиническая польза применения объемной эхографии с возможностью дальнейшего использования файлов трехмерных ультразвуковых данных для исследования ЦНС плода в I триместре беременности.
Об авторе
О. В. ТалолинаРоссия
Талолина Оксана Владимировна, врач-эксперт отделения ультразвуковой и функциональной диагностики,
Москва
Список литературы
1. Туманова У. Н., Шувалова М. П., Щеголев А. И. Анализ статистических показателей врожденных аномалий как причины ранней неонатальной смерти в Российской Федерации //Росcийский вестник перинатологии и педиатрии. 2018;63(6):60-67. https://doi.org/10.21508/1027-4065-2018-63-5-60-67
2. Abuhamad A., Chaoui R. The getal central nervous system. In: Abuhamad A., Chaoui R. First trimester ultrasound diagnosis of fetal abnormalities. 1. Philadelphia: Wolters Kluwer Health. 2018;113-144. ISBN: 9781496396372.
3. Altmann R., Rechberger T., Altmann C., Hirtler L., Scharnreitner I., Stelzl P., Enengl S. Development of the prosencephalic structures, ganglionic eminence, basal ganglia and thalamus at 11 + 3 to 13 + 6 gestational weeks on 3D transvaginal ultrasound including normative data. Brain Struct. Funct. 2023;228:2089-2101. https://doi.org/10.1007/s00429-02302679-y
4. Altmann R., Scharnreitner I., Auer C., Hirtler L., Springer C., Falschlehner S., Arzt W. Visualization of the third ventricle, the future cavum septi pellucidi, and the cavum veli interpositi at 11+3 to 13+6 gestational weeks on 3D transvaginal ultrasound including normative data. Ultraschall Med. 2023;44(1):e72-e82. https://doi.org/10.1055/a-1683-6141
5. Altmann R., Schertler C., Scharnreitner I., Arzt W., Dertinger S., Scheier M. Diagnosis of Fetal Posterior Fossa Malformations in High-Risk Pregnancies at 12–14 Gestational Weeks by Transvaginal Ultrasound Examination. Fetal Diagn. Ther. 2020;47(3):182-187. https://doi.org/10.1159/000501500
6. Andescavage N. N., du Plessis A., McCarter R., Serag A., Evangelou I., Vezina G., Robertson R., Limperopoulos C. Complex Trajectories of Brain Development in the Healthy Human Fetus. Cereb Cortex. 2017;27(11):5274-5283. https://doi.org/10.1093/cercor/bhw306
7. Atta C. A., Fiest K. M., Frolkis A. D., Jette N., Pringsheim T., St GermaineSmith C., Rajapakse T., Kaplan G. G., Metcalfe A. Global Birth Prevalence of Spina Bifida by Folic Acid Fortification Status: A Systematic Review and MetaAnalysis. Am. J. Public. Health. 2016;106: e 24-34. https://doi.org/10.2105/AJPH.2015.302902
8. A. Bilardo C. M., Chaoui R., Hyett J. A., Kagan K. O., Karim J. N., Papageorghiou T., Poon L. C., Salomon L. J., Syngelaki A. Nicolaides K. H. ISUOG Practice Guidelines (updated): performance of 11–14-week ultrasound scan. Ultrasound Obstet Gynecol. 2023;61(1):127-143. https://doi.org/10.1002/uog.26106
9. Birnbaum R., Barzilay R., Brusilov M., Wolman I., Malinger G. The early pattern of human corpus callosum development: A transvaginal 3D neurosonographic study. Prenat. Diagn. 2020;40(10):1239-1245. https://doi:10.1002/pd.5735
10. Blencowe H., Kancherla V., Moorthie S., Darlison M. W., Modell B. Estimates of global and regional prevalence of neural tubedefectsfor 2015: asystematicanalysis. Ann N Y Acad Sci. 2018 Feb;1414(1):3146. https://doi.org/10.1111/nyas.13548. Epub 2018 Jan 24. PMID: 29363759.
11. Broughan J. M., Martin D., Higgins T., Swan G., Cullum A., Kurinczuk J. J., Draper E. S., Luyt K., Wellesley D. G., Stevens S., Tedstone A., Rankin J. Prevalence of neural tube defects in England prior to the mandatory fortification of non-wholemeal wheat flour with folic acid: a populationbased cohort study. Arch. Dis. Child. 2024 Jan 22;109(2):106-112. https://doi.org/10.1136/archdischild-2023-325856
12. Cara M. L., Streatam I., Buga A. M., Iliescu D. G. Developmental brain asymmetry. The good and the bad sides. Symmetry. 2022;14:128. https://doi.org/10.3390/sym14010128
13. Comănescu M. C., Căpitănescu R. G., Comănescu A. C., Cernea N., Popa A., Barbu E. M., Albulescu D. M. First Trimester Neurosonogram-Our Experience. Curr Health Sci J. 2019 Apr-Jun;45(2): 167-173. https://doi.org/10.12865/CHSJ.45.02.06. Epub 2019 Jun 30. PMID: 31624643; PMCID: PMC6778289.
14. Conturso R., Contro E., Bellussi F., Youssef A., Pacella G., Martelli F., Rizzo N., Pilu G., Ghi T. Demonstration of the Pericallosal Artery at 11-13 Weeks of Gestation Using 3D Ultrasound. Fetal Diagn Ther. 2015;37(4):305-9. https://doi.org/10.1159/000366156. Epub 2014 Nov 1. PMID: 25376870.
15. Engels A. C., Joyeux L., Brantner C., De Keersmaecker B., De Catte L., Baud D., Deprest J., Van Mieghem T. Sonographic detection of central nervous system defects in the first trimester of pregnancy. Prenat. Diagn. 2016;36(3):266-273. https://doi.org/10.1002/pd.4770
16. Familiari A., Di Ilio C., Fanelli T., Volpe P., Dall'Asta A., Volpe N., Zegarra R. R., Minopoli M., Thilaganathan B., Prefumo F., Quarello E., Raffaelli R., Binder J., Grisolia G., Rizzo G., Meagher S., Tran H., Boldrini L., Ghi T. (2024), OP02.09: AIRFRAME: artificial intelligence for recognition of fetal brain anomalies from ultrasound images of the first trimester. Ultrasound Obstet Gynecol. 2024;64:6465. https://doi.org/10.1002/uog.27891
17. Ferreira C., Rouxinol-Dias A. L., Loureiro T., Nicolaides K. Subarachnoid space diameter in chromosomally abnormal fetuses at 11-13 weeks' gestation. J. Matern Fetal Neonatal Med. 2019;32(12):2079-2083. https://doi.org/10.1080/14767058.2018. 1425833
18. Gonçalves L. F. Three-dimensional ultrasound of the fetus: how does it help? Pediatr Radiol. 2016;46(2):177-189. https://doi:10.1007/s00247-015-3441-6
19. Khalifeh A., Weiner S., Berghella V., Scott S., Gerson A. Comparative Analysis of Two — Versus Three-Dimensional Sonography for Nuchal Translucency Measurement. Am. J. Perinatol. 2016;33(5): 486-489. https://doi.org/10.1055/s-003 5-1566248
20. Leibovitz Z., Lerman-Sagie T., Haddad L. Fetal Brain Development: Regulating Processes and Related Malformations. Life (Basel). 2022;12(6):809. https://doi.org/10.3390/life12060809
21. Li Z., Di J. Prevention and Control of Birth Defects in China: Achievements and Challenges. China CDC Wkly. 2021 Sep 10;3(37):771-772. https://doi.org/10.46234/ccdcw2021.191. PMID: 34594987; PMCID: PMC8441183.
22. Malinger G., Paladini D., Haratz K. K., Monteagudo A., Pilu G. L., TimorTritsch I. E. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet. Gynecol. 2020;56(3): 476-484. https://doi.org/10.1002/uog.22145
23. Morris J. K., Wellesley D. G., Barisic I., Addor M.-C., Bergman J. E. H., Braz P., Cavero-Carbonell C., Draper E. S., Gatt M., Haeusler M., Klungsoyr K., Kurinczuk J. J., Lelong N., Luyt K., Lynch C., O’Mahony M. T., Mokoroa O., Nelen V., Neville A. J., Pierini A., Randrianaivo H., Rankin J., Rissmann A., Rouget F., Schaub B., Tucker D. F., VerellenDumoulin C., Wiesel A., Zymak-Zakutnia N., Lanzoni M., Garne E. Epidemiology of congenital cerebral anomalies in Europe: A multicentre, population-based EUROCAT study. Arch Dis in Child. 2019;104(12):1181-1187. https://doi.org/10.1136/archdischild-2018-316733
24. Oumer M., Tazebew A., Silamsaw M. Birth prevalence of neural tube defects and associated risk factors in Africa: a systematic review and meta-analysis. BMC Pediatr 21, 190 (2021). https://doi.org/10.1186/s12887-021-02653-9
25. Paladini D., Malinger G., Birnbaum R., Monteagudo A., Pilu G., Salomon L. J., Timor-Tritsch I. E. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 2: performance of targeted neurosonography. Ultrasound Obstet Gynecol. 2021. https://doi.org/10.1002/uog.23616
26. Paviova E., Markov D., Ivanov S. Fetal Anatomy Assessment at 11+0-13+6 W.G. After Acquistion of a Single 3D VolumeMyth or Reality? Akush. Ginekol. (Sofiia) 2015;54(4):3-11.
27. Peker N., Yeniel A. O., Ergenoglu M., Hurşitoğlu S. Akercan F., Karadadaş N. Combination of intracranial translucency and 3D sonography in the first trimester diagnosis of neural tube defects: case report and review of literature. Ginekol Pol. 2013;84(1):65-67. https://doi.org/10.17772/gp/1543
28. Pertl B., Eder S., Stern C., Verheyen S. The Fetal Posterior Fossa on Prenatal Ultrasound Imaging: Normal Longitudinal Development and Posterior Fossa Anomalies. Ultraschall Med. 2019;40(6): 692-721. https://doi.org/10.1055/a-10150157
29. Pooh R. K. Three-dimensional Evaluation of the Fetal Brain. Donald School J. Ultrasound Obstet Gynecol. 2017;11(4): 268-275. https://doi.org/10.5005/jp-journals-10009-1532
30. Rousian M., Groenenberg I. A. L., Hop W. C., Koning A. H. J., van der Spek P. J., Exalto N., Steegers E. A. P. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality. Reprod Sci. 2013; 20(8):899-908. https://doi.org/10.1177/1933719112468950
31. Martins Santana E. F., Araujo Júnior E., Tonni G., Costa F. D. S., Meagher S. Acrania-exencephaly-anencephaly sequence phenotypic characterization using twoand three-dimensional ultrasound between 11 and 13 weeks and 6 days of gestation. J. of Ultrason. 2018;18(74):240246. https://doi.org/10.15557/JoU.2018. 0035
32. Scheier M., Lachmann R., Pětroš M., Nicolaides K. H. Three-dimensional sonography of the posterior fossa in fetuses with open spina bifida at 11–13 weeks' gestation. Ultrasound Obstet. Gynecol. 2011;38(6):625-629. https://doi.org/10.1002/uog.9067
33. Shwe W. H., Schlatterer S. D., Williams J., du Plessis A. J., Mulkey S. B. Outcome of agenesis of the corpus callosum diagnosed by fetal MRI. Pediatr Neurol. 2022;135:44‐51.https://doi.org/10.1016/j.pediatrneurol.2022.07.007
34. He S., Ruan J., Wang X., Lyu G., Wei Y., Huang T., Zeng P. Measurement of fetal conus distance with 3D ultrasonography as a reliable prenatal diagnosis method for tethered cord syndrome. Obstetrics & Genaecology Research. 2020;46(4):587594. https://doi.org/10.1111/jog.14202
35. Xiao S., Zhang J., Zhu Y., Zhang Z., Cao H., Xie M., Zhang L. Application and Progress of Artificial Intelligence in Fetal Ultrasound. J. Clin. Med. 2023;12(9): 3298. https://doi.org/10.3390/jcm12093298
36. Tudorache Ş., Căpitănescu R. G., Drăgușin R. C., Zorilă G. L., Marinaș M. C., Cernea N., Pătru C. L. Implications of the First Trimester 2d and 3D Ultrasound in Pregnancy Outcome. Curr. Health. Sci. J. 2019;45(3):311-315. https://doi.org/10.12865/CHSJ.45.03.10
37. Ushakov F., Sacco A., Andreeva E., Tudorache S., Everett T., David A. L., Pandya P. P. Crash sign: new first-trimester sonographic marker of spina bifida. Ultrasound Obstet. Gynecol. 2019; 54(6):740-745. https://doi.org/10.1002/uog.20285
38. Volpe N., Dall'Asta A., Di Pasquo E., Frusca T., Gh T. First-trimester fetal neurosonography: technique and diagnostic potential. Ultrasound Obstet. Gynecol. 2021; 57(2):204-214. https://doi.org/c10.1002/uog.23149
39. Volpe P., De Robertis V., Volpe G., Boito S., Fanelli T., Olivieri C., Votino C., Persico N. Xiao. Position of the choroid plexus of the fourth ventricle in firstand second-trimester fetuses: a novel approach to early diagnosis of cystic posterior fossa anomalies. Ultrasound Obstet Gynecol. 2021;58 (4):568-575. https://doi.org/10.1002/uog.23651
40. Xie H. N., Wang N., He M., Zhang L. H., Cai H. M., Xian J. B., Lin M. F., Zheng J., Yang Y. Z. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet Gynecol. 2020;56(4):579-587. https://doi.org/10.1002/uog.21967
41. Yankova M., Stratieva V., Chaveeva P., Hadjidekov G. Detection of Fetal Defects in First Trimester by Ultrasound Examination — Abilities and Limitations. International Journal of Gynecology, Obstetrics and Neonatal Care. 2016;3;41-46. https://doi.org/10.15379/2408-9761.2016.03.02.03
42. Zegarra R. R., Volpe N., Bertelli E., Amorelli G. M., Ferraro L., Schera G. B. L., Cromi A., di Pasquo E., Dall’Asta A., Ghezzi F., Frusca T., Ghi T. ThreeDimensional Sonographic Evaluation of the Position of the Fetal Conus Medullaris at First Trimester. Fetal Diagn. Ther. 2021;48(6):464-471. https://doi.org/10.1159/000516516
Дополнительные файлы
Рецензия
Для цитирования:
Талолина О.В. Возможности объемной эхографии для исследовании ЦНС плода в первом триместре беременности. Радиология — практика. 2025;(5):89-102. https://doi.org/10.52560/2713-0118-2025-5-89-102
For citation:
Talolinа O.V. The Possibilities of Volumetric Echography for the Study of the Fetal Central Nervous System in the First Trimester of Pregnancy. Radiology - Practice. 2025;(5):89-102. (In Russ.) https://doi.org/10.52560/2713-0118-2025-5-89-102
















