Application of Artificial Intelligence Technologies and Software for Measuring the Stones’ Volume According to Computed Tomography in Patients with Urolithiasis (Literature Review)
https://doi.org/10.52560/2713-0118-2025-5-60-71
Abstract
Aim. The choice of surgical treatment method and the prognosis of its effectiveness in urolithiasis depends on the MSCT characteristics of the stone: localization, size, density. In the literature, a CT parameter of a concretion, its volume, is proposed as a promising predictor of the success of surgical intervention. This study examines approaches to volumetry of urinary stones using software and artificial intelligence.
Materials and Methods. The most relevant and cited studies, fundamental work on the automated determination of the volume of concretion, current clinical recommendations for the diagnosis and treatment of ICD, posted in scientifi databases in the public domain, have been studied.
Results. Modern approaches to automated volumetry of kidney and ureter calculi are analyzed, and the practical significance of the results of measuring lithological volume by software and artificial intelligence algorithms is demonstrated.
Conclusion. Automated methods of volumetry of urinary stones according to computed tomography exceed the accuracy of the results of the calculation of the lithological volume by a radiologist. The use of software and artificial intelligence methods can improve the diagnostic accuracy and reproducibility of measurements in patients with urolithiasis, and optimize the work of radiation diagnostics departments.
About the Authors
D. A. VarjuhinaRussian Federation
Varjuhina Dar'ja Antonovna, radiologist, postgraduate student, assistant at the department of radiation diagnostics named after professor N. E. Stern
Saratov
M. L. Chehonackaja
Russian Federation
Chehonackaja Marina Leonidovna, D. Sc., ultrasound diagnostics doctor, professor, head of the department of radiation diagnostics named after prof. N. E. Stern
Saratov
O. A. Kondrat'eva
Russian Federation
Kondrat'eva Ol'ga Alekseevna, Ph.D. in Medicine, radiologist, associate professor of the department of radiation diagnostics named after prof. N.E. Stern
Saratov
D. A. Bobylev
Russian Federation
Bobylev Dmitrij Aleksandrovich, Ph.D. in Medicine, radiologist, associate professor of the department of radiation diagnostics named after prof. N. E. Stern
Saratov
I. A. Chehonackij
Russian Federation
Chehonackij Il'ja Andreevich, Ph. D. in Medicine, urologist, assistant at the department of urology and surgical andrology
Moscow
References
1. Pranovich A. A., Ismailov A. K., Karelskaya N. A., Kostin A. A., Karmazanovsky G. G., Gritskevich A. A. Artificial intelligence in the diagnosis and treatment of kidney stone disease. Russian Journal of Telemedicine and E-Health. 2022;8(1)42-57. (In Russ). https://doi.org/10.29188/2712-9217-2022-8-1-4257
2. Klinicheskie rekomendacii. Mochekamennaja bolezn': MKB 10: N20: klinicheskie rekomendacii. Ministerstvo zdravoohranenija Rossijskoj Federacii, Professional'nye associacii. Rossijskoe obshhestvo urologov, 2024. Tekst: jelektronnyj. Rubrikator klinicheskih rekomendacij MZ RF [https://cr.minzdrav. gov.ru]. URL: https://cr.minzdrav.gov.ru/view-cr/7_2 (date of application: 02.06.2025).
3. Babajide R., Lembrikova K., Ziemba J., Ding J., Li Y., Fermin A. S., Fan Y., Tasian G. E. Automated Machine Learning Segmentation and Measurement of Urinary Stones on CT Scan. Urology. 2022;169:41-46. https://doi.org/10.1016/j.urology.20 22.07.029
4. Bell J. R., Posielski N. M., Penniston K. L., Lubner M. G., Nakada S. Y., Pickhardt P. J. Automated Computer Software Compared with Manual Measurements for CT-Based Urinary Stone Metrics: An Evaluation Study. J. Endourol. 2018; 32(5):455-461. https://doi.org/10.1089/end.2017.0787
5. Cumpanas A. D., Morgan K. L., Chantaduly C., Bhatt R., Gorgen A. R. H., Rojhani A., McCormac A., Tran C. M., Piedras P., Lavasani S. A., Peta A., Brevick A., Xie L., Karani R., Tano Z. E., Ali S. N., Jiang P., Patel R. M., Landman J., Chang P., Clayman R. V. MP09-11. The Application of Artificial Intelligence for Renal Stone Volume Determination: Ready for Prime Time? Journal of Urology. 2023;209(4):108. https://doi.org/10.109 7/JU.0000000000003224.11
6. Cumpanas A. D., Chantaduly C., Morgan K. L., Shao W., Gorgen A. R. H., Tran C. M., Wu Y. X., McCormac A., Tano Z. E., Patel R. M., Chang P., Landman J., Clayman R. V. Efficient and Accurate Computed Tomography-Based Stone Volume Determination: Development of an Automated Artifi Intelligence Algorithm. J. Urol. 2024;211(2):256-265. https://doi.org/10.1097/ju.0000000000003766
7. Duan X., Wang J., Qu M., Leng S., Liu Y., Krambeck A., McCollough C. Kidney stone volume estimation from computerized tomography images using a model based method of correcting for the point spread function. J. Urol. 2012 Sep;188(3):989-95. https://doi.org/10.10 16/j.juro.2012.04.098
8. Elton D. C., Turkbey E. B., Pickhardt P. J., Summers R. M. A Deep Learning System for Automated Kidney Stone Detection and Volumetric Segmentation on Noncontrast CT Scans. Med Phys. 2022;49(4):2545-2554. https://doi.org/10.1002/mp.15518
9. Geraghty R., Pietropaolo A., Tzelves L., Lombardo R., Jung H., Neisius A., Petrik A., Somani B. K., Davis N. F., Gambaro G., Boissier R., Skolarikos A., Tailly T. Which Measure of Stone Burden is the Best Predictor of Interventional Outcomes in Urolithiasis: A Systematic Review and Meta-analysis by the YAU Urolithiasis Working Group and EAU Urolithiasis Guidelines Panel. Eur. Urol Open Sci. 2024 Nov 22;71:22-30. DOI: 10.1016/j.euros.2024.10.024
10. Kim J., Kwak C. W., Uhmn S., Lee J., Yoo S., Cho M. C., Son H., Jeong H., Choo M. S. A Novel Deep Learning-based Artificial Intelligence System for Interpreting Urolithiasis in Computed Tomography. Eur. Urol. Focus. 2024;10(6):1049-1054. https://doi.org/10.1016/j.euf.2024.07.003
11. Merigot de Treigny O., Bou Nasr E., Almont T., Tack I., Rischmann P., Soulié M., Huyghe E. The Cumulated Stone Diameter: A Limited Tool for Stone Burden Estimation. Urology. 2015;86(3): 477-81. https://doi.org/10.1016/j.urology.2015.06.018
12. Morgan K. L., Bhatt R., Soltanzadeh Zarandi S., Vo K., Vu M. C., Piedras P., Peta A., Brevik A., Karani R., Xie L., Jiang P., Ali S., Patel R. M., Landman J., Clayman R. V. MP33-02. Automated stone volume determination: training an artificially intelligent algorithm to segment kidney stones on ct and calculate 3d volume. J. of Urology. 2022;207(Supplement 5):e569.
13. Patel S. R., Stanton P., Zelinski N., Borman E. J., Pozniak M. A., Nakada S. Y., Pickhardt P. J. Automated Renal Stone Volume Measurement by Noncontrast Computerized Tomography is More Reproducible Than Manual Linear Size Measurement. The J. of Urology. 2011;186(6): 2275–2279. https://doi.org/10.1016/j.juro.2011.07.091
14. Skolarikos A., Jung H., Neisius A., Petřík A., Kamphius G. M., Davis N. F., Somani B., Tailly T., Lardas M., Gambaro G., Sayer J.A. EAU Guidelines. Edn. presented at the EAU Annual Congress Madrid 2025. Text: electronic. European Association of Urology [https://uroweb.org]. URL: https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAUGuidelines-on-Urolithiasis-2025.pdf (дата обращения: 25.05.2025). ISBN 978-94-92671-29-5.
15. Wang K., Ge J., Han W., Wang D., Zhao Y., Shen Y., Chen J., Chen D., Wu J., Shen N., Zhu S., Xue B., Xu X. Risk factors for kidney stone disease recurrence: a comprehensive meta-analysis. BMC Urol. 2022 Apr 19;22(1):62. https://doi.org/10.1186/s12894-022-01017-4
16. Wilhelm K., Miernik A., Hein S., Schlager D., Adams F., Benndorf M., Fritz B., Langer M., Hesse A., Schoenthaler M., Neubauer J. Validating Automated Kidney Stone Volumetry in CT and Mathematical Correlation with Estimated Stone Volume Based on Diameter. J. Endourol. 2018; 32(7):659-66. https://doi.org/10.1089/end.2018.0058
17. Zi H., Liu M. Y., Luo L. S., Huang Q., Luo P. C., Luan H. H., Huang J., Wang D. Q., Wang Y. B., Zhang Y. Y., Yu R. P., Li Y. T., Zheng H., Liu T. Z., Fan Y., Zeng X. T. Global burden of benign prostatic hyperplasia, urinary tract infections, urolithiasis, bladder cancer, kidney cancer, and prostate cancer from 1990 to 2021. Mil Med Res. 2024 Sep 18;11(1):64. https://doi.org/10.1186/s40779-024-00569-w.
Review
For citations:
Varjuhina D.A., Chehonackaja M.L., Kondrat'eva O.A., Bobylev D.A., Chehonackij I.A. Application of Artificial Intelligence Technologies and Software for Measuring the Stones’ Volume According to Computed Tomography in Patients with Urolithiasis (Literature Review). Radiology - Practice. 2025;(5):60-71. (In Russ.) https://doi.org/10.52560/2713-0118-2025-5-60-71
















