Preview

Radiology - Practice

Advanced search

Diffusion-Weighted Imaging for the Deferential Diagnosis of Benign and Malignant Ovarian Tumors

Abstract

The 92 patients in the aged group of 25 to 84 (mean 56 years) diagnosed with an ovarian tumor (OT) have been prospectively examined. All patients were undergone a routine MRI and have been obtained DWI (b value = 50, 800 and 1000 mm2/s) with the construction of the map of the apparent diffusion coefficient (ADC). A statistically reliable significant difference of the intensity signal of solid tissue of OT on DWI at value b = 1000 and T2-WI between patients with benign ovarian tumors (BOT) and malignant ovarian tumor (MOT) (p < 0,001) as well as by ADC (p = 0,009) was revealed. Statistically significant difference of intensity signal on T2WI and on DWI with ADC of solid and cystic components of OT between the primary MOT and metastatic ovarian were not detected. The average value of ADC of the solid tissue of MOT was 0,6 × 10-3 mm2/s, whereas of BOT consisted of 0,3 × 10-3 mm2/s. According to the ROC analysis the average value of ADC 0,35 × 10-3 mm2/s can serve as a threshold for the differential diagnosis of BOT and MOT with the sensitivity 95 %, specificity 60 %, with the positive predictive value 90 % and negative predictive value 75 %: with ADC below this value is more likely BOT, at exceeding of the trigger value is MOT. Thus, the analysis of the solid component of OT with using conventional MRI with DWI/ADC maps is most informative in the differential diagnosis of the BOT and MOT. MOT was characterized the higher signal intensity on DWI, T2WI and also higher ADC values than for BOT. Additionally, MOT had bilateral lesion, irregular shape, larger size, cystic-solid structure, irregular septs and ascites.

About the Authors

B. P. Olimov
Russian Medical Academy of Continuous Postgraduate Education, Ministry of Healthcare of Russia
Russian Federation


F. A. Kossov
Russian Medical Academy of Continuous Postgraduate Education, Ministry of Healthcare of Russia
Russian Federation


M. G. Lapteva
Research Institute of Clinical and experimental Radiology, the N. N. Blokhin Russian Cancer Research Center, Ministry of Healthcare of Russia
Russian Federation


O. N. Streltsova
Research Institute of Clinical and experimental Radiology, the N. N. Blokhin Russian Cancer Research Center, Ministry of Healthcare of Russia
Russian Federation


V. O. Panov
Research Institute of Clinical and experimental Radiology, the N. N. Blokhin Russian Cancer Research Center, Ministry of Healthcare of Russia
Russian Federation


I. E. Tyurin
Research Institute of Clinical and experimental Radiology, the N. N. Blokhin Russian Cancer Research Center, Ministry of Healthcare of Russia
Russian Federation


References

1. Каприн А. Д., Старинский В. В., Петров Г. В. Состояние онкологической помощи в России в 2016 году. М., 2017. - 236 с.

2. Олимов Б. П., Стрельцова О. Н., Паниченко И. В. и др. Лучевые методы диагностики опухолей придатков матки // Онкогинекология. 2018. № 4. С. 39-49.

3. Солопова А. Е., Макацария А. Д., Сдвижков А. М., Терновой С. К. Магнитно-резонансная томография в дифференциальной диагностике образований яичников. Возможности количественной мультипараметрической оценки // Акушерство и гинекология. 2017. № 2. С. 5-11.

4. Bakir B., Bakan S., Tunaci M. et al. Diffusion-weighted imaging of solid or predominantly solid gynaecological adnexial masses: is it useful in the differential diagnosis? // Br. J. Radiol. 2011. V. 84. P. 600-611.

5. Fujii S., Kakite S., Nishihara K. et al. Diagnostic accuracy of diffusion-weighted imaging in differentiating benign from malignant ovarian lesions // J. of Magnetic Resonance Imag. 2008. V. 28. P. 1149-1156.

6. Kadhim M. A., Jaafer L. S. et al. Role of MRI diffusion weighted imaging in differentiation between benign and malignant ovarian masses // Al-Kindy College Med. J. 2017. V. 13. P. 47-53.

7. Karnezis A. N., Cho K. R., Gilks C. B. et al. The disparate origins of ovarian cancers: pathogenesis and prevention strategies // Nat. Rev. Cancer. 2017. V. 17. Р. 65-74.

8. Mostafa H. M., Alaa El-Deen M., Hosam El-Deen G. et al. Role of magnetic resonance diffusion-weighted imaging in differentiation between benign and malignant ovarian masses // Med. J. Cairo Univ. 2017. V. 85 (8). P. 3205-3215.

9. Malek M., Pourashraf M., Mousavi A. S. et al. Differentiation of benign from malignant adnexal masses by functional 3 tesla MRI techniques: diffusion-weighted imaging and time-intensity curves of dynamic contrast enhanced MRI // Asian Pacific J. of Cancer Prev. 2015. V. 16. № 8. P. 3407-3412.

10. Pietro V. F., Giancarlo A. S. et al. MRI of ovarian masses: classification and differential diagnosis insights imaging // J. de Radiol. 2016. V. 1. P. 21-41.

11. Roussel A., Thomassin-Naggara I., Darai E. et al. Value of diffusion-weighted imaging in the evaluation of adnexal tumors // J. de Radiol. 2009. V. 90. № 5. P. 589-596.

12. Thomassin-Naggara I., Balvay D., Rockall A. et al. Added value of assessing adnexal masses with advanced MRI techniques // Hindawi Publishing Corporation Bio-Med. Res Int. 2015. V. 15. Р. 1-10.

13. Thomassin-Naggara I., Toussaint I., Perrot N. el al. Characterization of complex adnexal masses: value of adding perfusion - and diffusion-weighted MR imaging to conventional MR imaging // Radiol. 2011. V. 258. P. 793-803.

14. Thomassin-Naggara I., Darai E., Cuenod C. A. et al. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses // Eur. Radiol. 2009. V. 19. P. 1544-1552.

15. Yousef R., Ramadan H., Algebally A. M. W., Tantawy H. I. Can diffusion weighted imaging distinguish between benign and malignant solid or predominantly solid gynecological adnexal masses? // The Egyp. J. of Radiol. and Nucl. Med. 2013. V. 44. P 113-119.


Review

For citations:


Olimov B.P., Kossov F.A., Lapteva M.G., Streltsova O.N., Panov V.O., Tyurin I.E. Diffusion-Weighted Imaging for the Deferential Diagnosis of Benign and Malignant Ovarian Tumors. Radiology - Practice. 2019;(6):33-47. (In Russ.)

Views: 353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0118 (Online)