On the Introduction of Artificial Intelligence into the Daily Practice of Breast Pathology Diagnosis: has Everything been Taken into Account?
https://doi.org/10.52560/2713-0118-2023-3-36-49
Abstract
Artificial Intelligence (AI) has the potential to improve the diagnosis and effectiveness of breast cancer treatment. However, the use of AI in medicine in general, and in mammology in particular, requires regulation by legislative and legal acts to ensure the protection of patients’ rights, safety and quality of medical care. Special attention should be paid to the training of medical personnel and the development of new technologies and methods of working with AI. There are laws and regulations governing the use of AI in mammology around the world. This article reviews the laws governing the use of AI in breast radiology in Western Europe, Asia, and the United States.
About the Authors
V. A. KazakovaRussian Federation
Kazakova Vera Aleksandrovna, Doctor of Law, Professor, Head of the Department of Criminal Law Disciplines of the Institute of International Law and Justice; Chief Researcher of the 3rd Department of SIC-3
36, ul. Ostozhenka, Moscow, 119034
+7 (916) 948-09-54
E. V. Shivilov
Russian Federation
Shivilov Evgeniy Vitalievich, Ph. D., Oncologist of Oncosurgical Department of Breast
86, shosse Entusiastov, Moscow, 111123
+7 (985) 109-36-40
K. A. Anichkina
Russian Federation
Anichkina Kristina Arsenievna, Research laboratory Assistant, Resident of Surgery
86, shosse Entusiastov, Moscow, 111123
+7 (929) 989-01-91
S. A. Tyulyakova
Russian Federation
Tyulyakova Sofya Andreevna, Head of the Department of International Cooperation of the National Council of Youth Organizations of Lawyers, student student of the Institute of International Law and Justice
36, ul. Ostozhenka, Moscow, 119034
+7 (926) 230-50-09
A. V. Pasternak
Russian Federation
Pasternak Alina Vyacheslavovna, Student
2/4, ul. Bolshaya Pirogovskaya, Moscow, 119991
+7 (952) 999-50-19
References
1. Vavilin E. V. Artificial intelligence as a participant of civil relations: the transformation of RIGHT. Vestnik. Tomsk State University. Law. 2021;42:135–146. DOI: 10.17223/22253513/42/11 (In Russ.).
2. Laptev V. A. The concept of artificial intelligence and legal responsibility for its work. Law. Journal of the Higher School of Economics. 2019;2:79–102. DOI: 10.17323/20728166.2019.2.79.102 (In Russ.).
3. Solodkiy V. A., Kaprin A. D., Nudnov N. V., Kharchenko N. V., Zapirov G. M., Dibirova Sh. M., Podolskaya M. V., Kunda M. A. Artificial intelligence capabilities in breast cancer risk assessment on mammographic images (clinical examples). Vestnik of the Russian Scientific Center of Roentgenoradiology. 2023. 1. (In Russ.).
4. Tagaverdieva D. S., Omarova M. K., Sedipool A. T. The role of artificial intelligence in the life of society. Problems of Science. 2021;9(68):43–45. (In Russ.).
5. Deloitte Artificial intelligence in healthcare: Opportunities, applications, and risks (2019).
6. European Commission. Guidance on the use of artificial intelligence in healthcare (2019).
7. European Parliament. Resolution on artificial intelligence in education, culture and the audiovisual sector (2020).
8. FDA Regulation of Artificial Intelligence in Radiological Imaging. (2020). Radiology: Artificial Intelligence, 2(3), e190259.
9. Geras K. J., Mann R. M., Moy L. Artificial intelligence for mammography and digital breast tomosynthesis: current concepts and future perspectives. Radiology. 2018;290(3):758–766.
10. German Society of Senology. Recommendations for the use of artificial intelligence in mammography (2018).
11. Guidance on the Use of Artificial Intelligence in Medicine. National Health Commission, China, 2018.
12. Holmström U., Duriaud H. M., Huttunen S. Artificial intelligence in mammography: challenging the supremacy of radiologists. Acta Radiologica Open, (2020). 9(4), 2058460120915654.
13. INSERM. Artificial intelligence for the diagnosis of breast cancer (2019).
14. Kockelkoren R., Karssemeijer N. Improving mammography screening efficiency using artificial intelligence. Academic Radiology, (2019), 26(3), 410–418.
15. Kulkarni P., Agrawal P., Prabhu G. et al. Machine learning and artificial intelligence in breast imaging: a primer for radiologists. The Indian Journal of Radiology & Imaging, (2019), 29(4), 442–447.
16. Lauritzen A. D., Rodríguez-Ruiz A., von Euler-Chelpin M. C., Lynge E., Vejborg I., Nielsen M., Karssemeijer N., Lillholm M. An Artificial Intelligence-based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload. Radiology. 2022 Jul;304(1):41–49. DOI: 10.1148/radiol.210948. Epub 2022 Apr 19. PMID: 35438561.
17. Le E. P. V., Wang Y., Huang Y., Hickman S., Gilbert F. J. Artificial intelligence in breast imaging. Clinical radiology. 2019;74(5): 357–366. https://doi.org/10.1016/j.crad.2019.02.006
18. Medical Devices Act, Ministry of Food and Drug Safety, South Korea, 2004.
19. Medical Device Regulations, National Medical Products Administration, China, 2014.
20. Medical Devices Rules, Ministry of Health and Family Welfare, Government of India, 2017.
21. Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., Shamseer L., Tetzlaff J. M., Akl E. A., Brennan S. E., Chou R., Glanville J., Grimshaw J. M., Hróbjartsson A., Lalu M. M., Li T., Loder E. W., Mayo-Wilson E., McDonald S., McGuinness L. A., Stewart L. A., Thomas J., Tricco A. C., Welch V. A., Whiting P., Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71. DOI: 10.1136/bmj.n71. PMID: 33782057; PMCID: PMC8005924.
22. Pharmaceutical and Medical Device Act, Ministry of Health, Labour and Welfare, Japan, 2014.
23. Rodríguez-Ruiz A., Krupinski E., Mordang J. J., Schilling K., Heywang-Köbrunner S. H., Sechopoulos I., Mann R. M. Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System. Radiology. 2019 Feb;290(2):305– 314. DOI: 10.1148/radiol.2018181371. Epub 2018 Nov 20. PMID: 30457482.
24. Rodriguez-Ruiz A., Lång K., Gubern-Merida A., Broeders M., Gennaro G., Clauser P., Helbich T.H., Chevalier M., Tan T., Mertelmeier T., Wallis M. G., Andersson I., Zackrisson S., Mann R. M., Sechopoulos I. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. J. Natl. Cancer. Inst. 2019 Sep 1;111(9):916–922. DOI: 10.1093/jnci/djy222. PMID: 30834436; PMCID: PMC6748773.
25. Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 2021;71(3):209–249. https://doi.org/10.3322/caac.21660
26. UK Department of Health and Social Care. Improving patient outcomes through the use of artificial intelligence (2018).
27. Zeng B., Yu K., Gao L., Zeng, X., Zhou Q. Breast cancer screening using synthesized two-dimensional mammography: A systematic review and metaanalysis. Breast (Edinburgh, Scotland). 2021;59:270–278. https://doi.org/10.1016/j.breast.2021.07.016
28. Zhang Q., Li Y., Liu H. et al. Application of artificial intelligence in mammography: a perspective from China. Journal of Cancer. 2019;10(14): 3156–3163.
Supplementary files
Review
For citations:
Kazakova V.A., Shivilov E.V., Anichkina K.A., Tyulyakova S.A., Pasternak A.V. On the Introduction of Artificial Intelligence into the Daily Practice of Breast Pathology Diagnosis: has Everything been Taken into Account? Radiology - Practice. 2023;(3):36-49. (In Russ.) https://doi.org/10.52560/2713-0118-2023-3-36-49